Variabler Frequenzumrichter-Antrieb (FU) Mittelspannung 2,3kV – 13,8kV

Betriebsanleitung

de

MVH 2.0 Serie

RIGHT FROM THE START

IMPRESSUM

Herausgeber

AuCom MCS GmbH & Co. KG Borsigstraße 6 49324 Sendenhorst GERMANY Telefon: Internet:

E-Mail:

Dokumentennummer, Erstellungsdatum

MVH2.0_BA_1.0.1_de

Gültigkeit

Produkt:

Urheberrecht

© 2022 AuCom Electronics Ltd. Alle Rechte vorbehalten.

AuCom ist kontinuierlich um die Verbesserung seiner Produkte bemüht und behält sich daher das Recht vor, die Technischen Daten seiner Produkte zu jeder Zeit ohne vorherige Ankündigung zu ändern. Text, schematische Darstellungen und Bilder in diesem Dokument sind durch Copyright geschützt. Benutzer dürfen zur persönlichen Verwendung Teile des Materials kopieren, jedoch das Material für keinen anderen Zweck ohne vorherige Zustimmung von AuCom Electronics Ltd. kopieren oder verwenden. AuCom bemüht sich zu gewährleisten, dass die in diesem Dokument enthaltenen Informationen einschließlich der Abbildungen korrekt sind, übernimmt jedoch keine Gewähr für Fehler, Wegfall oder Unterschiede mit dem fertigen Erzeugnis.

+49 2526 93880 0 www.aucom.com sales@aucom.com

26.10.2023

MVH 2.0 SERIE

EINLEITUNG

	Allgemeine Informationen	
PRODUKTIDENTIFIKATION	Modell:	MVH 2.0 Serie
	Produktart:	Drehzahlregelung und Steuerung von Mittel- spannungs-Drehstrommotoren
	Produktgruppe:	Variabler Frequenzumrichter-Antrieb (FU)
Hersteller	AuCom MCS GmbH & Co. KG Borsigstraße 6 49324 Sendenhorst GERMANY	
	Telefon:	+49 2526 93880 0
	Internet:	www.aucom.com
	E-Mail:	<u>sales@aucom.com</u>
	Support:	www.aucom.com/contact-us/support-enquiry
DOKUMENT-INFORMATION	Titel:	MVH 2.0 Serie
	Dokumentart:	Betriebsanleitung
	Dokumentennummer:	MVH2.0_BA_1.0.1_de
Gültigkeit	Hardware – Steuereinheit: Hardware – I/O-Schnittstelleneinheit: Hardware – Bedieneinheit (HMI):	ab Version HC4 ab Version HC4 ab Version TPC1031Kt
	Firmware – Steuereinheit:	ab Version 2.27.10
	Firmware – I/O-Schnittstelleneinheit:	ab Version 2.27.10
	Firmware – Bedieneinheit (HMI):	ab Version 2.27.10

Version	Änderung	Initiator	Datum
1.0.0	Initialversion	AuCom, (FB)	09.08.2023
1.0.1	Geringfügige typografische sowie inhaltliche Korrekturen: Kap. 2 – Kap.8	AuCom, (FB)	26.10.2023

 Tab. 1-1
 MVH 2.0 Betriebsanleitung – Änderungshistorie

HINWEISE ZU DIESER BETRIEBSANLEITUNG

Diese Betriebsanleitung enthält wichtige Informationen für einen sicheren, effektiven und effizienten Gebrauch des variablen Frequenzumrichter-Antriebes (FU) MVH 2.0.

- **ORIGINALBETRIEBSANLEITUNG** Die Originalbetriebsanleitung wurde in deutscher Sprache erstellt.
 - *AUFBEWAHRUNG* Diese Betriebsanleitung ist Bestandteil des Produktes MVH 2.0 und ist stets in unmittelbarer Umgebung des Frequenzumrichters MVH 2.0 aufzubewahren.
 - **ZIELGRUPPE** Diese Betriebsanleitung richtet sich an das Personal für die *Installation, Inbetriebnahme* und *Wartung* des Produktes. Weiterführende Informationen über die Anforderungen zur Qualifikation und Autorisierung des Fachpersonals sind in dem Kapitel "1.3 Zielgruppe und Qualifikation" angeführt.

KAPITELÜBERSICHT Kapitel "1 Sicherheit"

Allgemeingültige und generell zu beachtende, produktrelevante Sicherheitshinweise.

Kapitel "2 Produktübersicht"

Grundlegende Informationen zum Frequenzumrichter MVH 2.0 und seiner bestimmungsgemäßen Verwendung.

Kapitel "3 Aufbau und Funktionen"

Mechanischer und elektrischer Aufbau des FU-Schranks und seinen Hauptkomponenten sowie generelle Funktionsweise des MVH 2.0.

Kapitel "4 Bedienung und Anzeigen"

Darstellung und Erläuterung aller relevanten Elemente für die erste Inbetriebnahme und die Bedienung des MVH 2.0.

Kapitel "5 FU-Betrieb"

Darstellung und Erläuterung der Betriebsfunktionen des MVH 2.0 für einen effektiven und effizienten Betrieb.

Kapitel "6 Wartung"

Maßnahmen zu Planung und Durchführung von Wartungsarbeiten, welche den Soll-Zustand des MVH 2.0 erhalten und seine Verfügbarkeit optimieren.

Kapitel "7 Instandsetzung"

Informationen über Ursachen und Abstellmaßnahmen von potenziellen Störungen sowie Anleitungen zur Wiederherstellung des Soll-Zustandes des MVH 2.0

Kapitel "8 Transport, Lagerung und Installation"

Informationen und Hinweise zur Erhaltung des Soll-Zustandes des MVH 2.0 während des Transportes und der Lagerung sowie allgemeine Hinweise zur Installation.

Kapitel "9 Entsorgung"

Hinweise zur sach- und umweltgerechten Entsorgung des MVH 2.0 nach endgültiger Außerbetriebsetzung.

Kapitel "10 Ersatzteile"

Bestellinformationen zu erhältlichen Ersatzteilen und Zubehör für das Produkt MVH 2.0.

SYMBOLE UND DARSTELLUNGEN

GEFAHR

WARNHINWEISE

In dieser Betriebsanleitung werden Sicherheits- und Schutzstufen als GEFAHR, WARNUNG, VORSICHT und ACHTUNG klassifiziert.

Warnt vor einer Gefährdung durch elektrischen Schlag mit hohem Risikograd, die bei Nicht-Vermeidung zu Tod oder schweren Verletzungen führen kann.

WARNUNG

Warnt vor einer Gefährdung durch elektrischen Schlag mit mittlerem Risikograd, die bei Nicht-Vermeidung zu Tod oder schweren Verletzungen führen kann.

VORSICHT

Warnt vor einer Gefährdung (allgemeine Gefahrenstelle) mit niedrigem Risikograd, die bei Nicht-Vermeidung zu geringfügigen oder mäßigen Verletzungen führen kann.

ACHTUNG

Warnt vor Situationen, die bei Nicht-Vermeidung zu Sachschäden führen können.

Werden für einen Sachverhalt mehre unterschiedliche Stufen von Gefährdungen in einem Warnhinweis zusammengefasst, wird immer die höchste Stufe der Warnhinweise gewählt. Warnhinweise zur Personengefährdung können Warnhinweise zu Sachschäden enthalten.

Die in dieser Betriebsanleitung verwendeten Warnhinweise sind jeweils durch:

- ein Warnsymbol,
 - ein Signalwort zur Kennzeichnung des Ausmaßes der Gefährdung,
 - einer Angabe zur Art und Quelle der Gefährdung,
 - einer Angabe über die möglichen Folgen bei Nicht-Vermeidung der Gefährdung sowie
 - den zu ergreifenden *Maßnahmen zur Vermeidung* einer Gefährdung

gekennzeichnet.

	Sig	nalwort
	Art und Quelle der Gefährdung	
	Mögliche Folgen bei Nicht-Vermeidung der Gefährdung.	
Warnsymbol	\triangleright	Zu ergreifende Maßnahme 1 zur Vermeidung der Gefährdung
	\triangleright	Zu ergreifende Maßnahme 2 zur Vermeidung der Gefährdung
	۶	

INFORMATIVE HINWEISE

Struktur von Warnhinweisen

In dieser Betriebsanleitung werden zusätzliche Informationen von allgemeinen oder zur Vertiefung von speziellen Sachverhalten als HINWEIS bzw. als ENTSORGUNGSHINWEIS angegeben.

HINWEIS

Weist auf eine bestimmte Information hin, die sich auf die Verwendung oder den Betrieb des Geräts bezieht.

HINWEISE ZUR ENTSORGUNG In dieser Betriebsanleitung werden Hinweise zur sach- und umweltgerechten Entsorgung als ENTSORGUNGSHINWEIS ausgewiesen.

ENTSORGUNGSHINWEIS

Weist auf die Vorschriften zur Entsorgung von Elektroaltgeräten hin.

Verweise Zur Erhöhung der Effizienz dieser Betriebsanleitung wird für die Beschreibung von gleichen Vorgängen bzw. weiterführende Informationen auf exemplarische Anleitungen bzw. weiterführende Kapitel verwiesen.

KAPITELVERWEIS

Angabe des Vorgangs/Themas sowie Angabe der referenzierten Kapitelnummer sowie der Kapitelüberschrift.

Kennzeichnung von Anleitungen Der *Beginn* einer *allgemeinen* Anleitung zur Durchführung einer Handlungssequenz wird wie folgt eingeleitet:

ANLEITUNG - Titel der Anleitung

 \triangleright

Start

Der *Beginn* einer Anleitung *mit Angabe der erforderlichen Autorisierung (Benutzerebene)* zur Durchführung einer Handlungssequenz wird wie folgt eingeleitet:

ANLEITUNG - Titel der Anleitung

BENUTZEREBENE: "Name"

Die Handlungsschritte der Handlungssequenz einer Anleitung wird wie folgt angegeben:

Schritt 1: ...

- Resultat 1 des ersten Handlungsschrittes
- Resultat 2 des ersten Handlungsschrittes
- ≻ ...

S

Schritt 2: ...

- Resultat 1 des zweiten Handlungsschrittes
- Resultat 2 des zweiten Handlungsschrittes
- ▶ ...

Das Ende einer allgemeinen oder speziellen Anleitung wird wie folgt angegeben:

ENDE

TYPOGRAFISCHE KONVENTIONEN In dieser Betriebsanleitung wird die Kursivschrift angewendet auf Eigennamen von:

Parametern und Funktionen,

- Einstelloptionen für Parameter,
- Alarm- und Fehlermeldungen und
- allgemeine Begriffe von besonderer Bedeutung

INHALTSVERZEICHNIS

Impi	ressu	m		2
Einle	eitung	9		3
	Allg	emeine l	Informationen	3
	Hinv	veise zu	dieser Betriebsanleitung	
	Sym	bole und	d Darstellungen	5
Inha	Itsver	zeichnis	5	8
Abkı	ürzun	gsverzei	ichnis	11
1	Sich	erheit		12
	1.1	Warnz	eichen am FU-Schrank	12
	1.2	Bestim	nmungsgemäßer Gebrauch	12
	1.3	Zielgru	uppe und Qualifikation	13
	1.4	Sicher	heitshinweise	14
		1.4.1	Die fünf Sicherheitsregeln der Elektrotechnik	14
		1.4.2	Sicherer Betrieb	15
2	Proc	duktüber	-sicht	
	2.1	Wichti	ge Hinweise zum Produkt	
		2.1.1	MS-Frequenzumrichter MVH 2.0 – Gesamtansicht	
		2.1.2	Gefahrenbereiche	23
		2.1.3	Konformität	24
		2.1.4	Kennzeichnung des Produktes	
	2.2	Produk	xtdaten (Technische Daten)	
		2.2.1	Leistungsmerkmale des MVH 2.0	
		2.2.2	Maße und Gewichte	
		2.2.3	Umgebung	
		2.2.4	Technische Daten	
	2.3	Lieferu	umfang	
		2.3.1	Luftgekühlte FU-Schränke	
3	Aufb	au und l	Funktionen	
	3.1	Grundl	lagen des Verfahrens	41
	3.2	Mecha	nischer Aufbau	
		3.2.1	ACC – AuCom Compact Cabinet: Frontseitiger Servicebereich	
		3.2.2	AFA – AuCom Front Access: Frontseitiger Servicebereich	51
		3.2.3	ADA – AuCom Double Access: Doppelseitiger Servicebereich	54
	3.3	Sicher	heits- und Überwachungseinrichtungen	57
		3.3.1	NOT-AUS / NOT-HALT	57
		3.3.2	Schranktürverrieglungen	59
		3.3.3	Verriegelung des Kurbelzugangs für Trenn-/Erdungsschalter	60
		3.3.4	Erdungskonzept des MVH 2.0	62
	3.4	Multi-L	_evel-Transformator	64
	3.5	FU-St€	euersystem	67

		3.5.1	FU-Steuereinheit – Baugruppen	67
		3.5.2	I/O-Schnittstelleneinheit (SPS) für Ein- und Ausgänge	73
		3.5.3	Bedieneinheit HMI (Touchscreen)	
	3.6	Leistu	ngszelle	
		3.6.1	Elemente einer Leistungszelle	
		3.6.2	Elektrisches Funktionsprinzip	94
		3.6.3	Steuer-Baugruppe der Leistungszelle	
		3.6.4	Treiber-Baugruppe der Leistungszelle	97
4	Bed	ienung (und Anzeigen	
	4.1	Einleit	tung	
	4.2	Warns	signale	
	4.3	Bedie	nungs- und Anzeigeelemente	
		4.3.1	NOT-AUS-Schalter	
		4.3.2	Trenn-/Erdungsschalter: Schlüsselschalter, Kurbelzugang und Schaltkurbel	
		4.3.3	Hauptschaltelement (Mittelspannung)	
		4.3.4	START-/STOP-Schaltflächen des HMI	
		4.3.5	RESET-Elemente	
		4.3.6	Störungsanzeigen	
		4.3.7	Bedieneinheit (HMI)	
	4.4	Betrie	bsarten und Arbeitsmodi (FU-Modi)	
	4.5	Allger	neine Bedienhinweise	
		4.5.1	FU ein- und ausschalten (Betriebsbereitschaft)	
		4.5.2	Startseite und Standby-Seite	
		4.5.3	Menüstruktur	
		4.5.4	Menünavigation	
		4.5.5	Benutzerebenen	
		4.5.6	Änderungen von Parametereinstellungen (allgemein)	
		4.5.7	Auswahl der Menüsprache	
	4.6	Haupt	menü (HMI)	
		4.6.1	Menü: FU-Monitor	
		4.6.2	Menü: Trendrekorder	
		4.6.3	Menü: Parameter	141
		4.6.4	Menü: Ereignisrekorder	
		4.6.5	Menü: Leistungszellen: Status	
		4.6.6	Menü: Weitere Einstellungen	
5	FU-	Betrieb		
	5.1	Betrie	bsfunktionen	
		5.1.1	Erweiterte U/f-Steuerung	
		5.1.2	Asynchronmotor - Vektorregelung mit offenem Regelkreis	
		5.1.3	Synchronmotor – Vektorregelung mit offenem Regelkreis	
		5.1.4	Synchrone Umschaltung	

		5.1.5	Master/Slave Steuerungs- und Regelungsfunktionen	
		5.1.6	Schnellstart / FU-Start bei laufendem Motor	
		5.1.7	Motor-Rückwärtslauf	
		5.1.8	MS-Netzausfall	225
		5.1.9	Motorüberlastungsschutz (thermisches Abbild)	
		5.1.10	Automatischer Rampeneingriff	228
		5.1.11	Überbrückter Betrieb (Bypass) des FU	
		5.1.12	Überbrückter Betrieb (Bypass) der Leistungszelle	
6	War	tung		
	6.1	Routine	einspektion	
	6.2	Routine	ewartung	
	6.3	Wartur	g von Ersatz-Leistungszellen	
7	Insta	andsetzu	ng	
	7.1	Störun	gssuche und Störungsbeseitigung	
		7.1.1	Alarmmeldungen	
		7.1.2	Fehlermeldungen	
	7.2	Repara	tur	
		7.2.1	Austausch einer defekten Leistungszelle	
8	Trar	nsport, La	agerung und Installation	
	8.1	Eingan	gskontrolle	
	8.2	Lageru	ng	
	8.3	Transp	ort	
		8.3.1	Handhabung beim Transport	
	8.4	Installa	ition	
9	Ents	sorgung		
10	Ersa	atzteile		
Inde	х			

ABKÜRZUNGSVERZEICHNIS

ABKÜRZUNGEN

Abkürzung	Beschreibung (deutsch)	Beschreibung (englisch)
ACC	AuCom Kompaktschrank AuCom Compact Cabinet	
AFA	AuCom einseitiger Servicezugang	AuCom Front Access
ADA	AuCom zweiseitiger Servicezugang	AuCom Double Access
AI	Analogeingang	analog input
AO	Analogausgang	analog output
DI	Digitaler Eingang	digital input
DO	Digitaler Ausgang	digital output
FE	Funktionserdung	functional earth
Fkt.	Funktion	
FRT	- fault ride through	
FU	Frequenzumrichter	
HMI	Bedieneinheit	human machine interface
IGBT	Bipolarer Transistor mit isolierter Steuerelektrode	insulated-gate bipolar transistor
1/0	Eingänge/Ausgänge	Inputs/outputs
MS	Mittelspannung	
NS	Niederspannung	
PE	Schutzerdung	protective earth
PLS	Prozessleitsystem	
[pu]	-	per unit
SPS	Speicherprogrammierbare Steuerung	
VC	Vektorregelung	vector control

Formelzeichen

Δφ	Phasenwinkeldifferenz
f	Frequenz
Ι	el. Strom
n	Drehzahl
ϑ	Temperatur
Rs	Statorwiderstand
U	el. Spannung
≙	entspricht

1 SICHERHEIT

Um das Produkt MVH 2.0 sicher zu verwenden, muss diese Betriebsanleitung vom Anwender vor der Verwendung gelesen, verstanden und beachtet werden. Diese Betriebsanleitung muss bei allen Arbeiten an und mit dem Produkt jederzeit verfügbar sein.

ALLGEMEINESDie Frequenzumrichter der MVH 2.0 Serie sind sicher konstruiert, so dass bei bestim-
mungsgemäßer Verwendung des Produktes keine Gefährdungen ausgehen. Der Betrieb
des MVH 2.0 setzt jedoch den Anschluss des Frequenzumrichters an die Mittelspannung
voraus. Daher sind in dem FU-Schrank gefährliche, hohe Spannungen vorhanden, die bei
nicht-bestimmungsgemäßem Gebrauch des Produktes zu Personengefährdungen und
Sachschäden an der Anlage führen können.

Dieses Kapitel umfasst alle sicherheitsbezogenen Informationen für eine sichere Verwendung des Produktes.

SICHERHEITSVORKEHRUNGEN Für das mit der Bedienung und Wartung der Geräte befasste Personal sind technische Schulungen erhältlich. Wenden Sie sich für weitere Informationen an AuCom oder Ihren örtlichen Lieferanten.

1.1 WARNZEICHEN AM FU-SCHRANK

Die folgenden Warnzeichen sind am FU-Schrank des MVH2.0 angebracht und sind zu beachten:

Warnzeichen	Beschreibung	
4	Hinweis auf eine Gefahrenstelle mit einer Gefährdung durch elektrischen Schlag	
	Allgemeiner Hinweis auf eine Gefahrenstelle mit Verweis auf die entsprechende Dokumentation	

1.2 BESTIMMUNGSGEMÄßER GEBRAUCH

Die Frequenzumrichter der MVH 2.0 Serie dienen zur stufenlosen Drehzahlregelung von Drehstromantrieben (Asynchron- und Synchronmotoren) auf der Mittelspannungsebene (2,3 kV bis 13,8 kV).

Diese Betriebsanleitung gilt als Spezifikation für den bestimmungsgemäßen Gebrauch des Produktes und ist unbedingt einzuhalten. Die Betriebsanleitung muss für sämtliche Tätigkeiten, die in Verbindung mit dem Produkt stehen, verfügbar sein.

QUALIFIZIERTES UNDSämtliche Arbeiten an und mit dem Produkt während des gesamten ProduktlebenszyklusAUTORISIERTES PERSONALsind nur von entsprechend qualifiziertem sowie autorisiertem Personal durchzuführen.

TRANSPORT UND LAGERUNG Sämtliche Hinweise sowie relevante technische Daten zu den Transport– und Lagerungsvoraussetzungen sind zu beachten und einzuhalten.

PERSÖNLICHEDie Vorschriften zur Verwendung von persönlicher Schutzausrüstung müssen bei allenSchutzausrüstungTätigkeiten eingehalten werden.

ANLAGEN-ERRICHTUNG Es sind die länderspezifischen, lokalen und für die jeweilige Branche geltenden Verordnungen und Vorschriften für die Sicherheit und die Errichtung der Anlage einzuhalten. Sämtliche Hinweise und Angaben zu den Umgebungsbedingungen sowie den Aufstellbe-UMGEBUNG UND AUFSTELLUNG dingungen sind zu beachten und einzuhalten. BETRIEB Alle Komponenten der Anwendung (Frequenzumrichter, Antrieb, Energieversorgung und deren Absicherung) müssen hinsichtlich ihren Bemessungsgrößen, ihrer Funktion und sämtlichen Parametereinstellungen aufeinander abgestimmt sein. Die Modifikation bzw. Manipulation des MVH 2.0 ist nicht gestattet. Modifikation des Produktes UND HAFTUNGSAUSSCHLUSS Eine Modifikation bzw. Manipulation des MVH 2.0 bedeutet eine Verwendung des Produktes außerhalb seiner Spezifikation und damit einen nicht-bestimmungsgemäßen Gebrauch, wodurch Personengefährdungen und Sachschäden an der Anlage verursacht werden können. Jegliche Konsequenzen eines nicht-bestimmungsgemäßen Gebrauchs des Produktes sind nicht vom AuCom-Support abgedeckt und führen mit sofortiger Wirkung zu einem Verlust der Garantie bzw. Gewährleistung. AuCom schließt jede Haftung für einen nicht-bestimmungsgemäßen Gebrauch und die daraus evtl. entstandenen Folgen aus.

FEHLGEBRAUCH Jede Verwendung die nicht dem bestimmungsgemäßen Gebrauch des Produktes MVH 2.0 entspricht, gilt als Fehlgebrauch.

GEFAHR Gefahr bei Fehlgebrauch

Ein Fehlgebrauch des MVH 2.0 kann zu Tod, schweren Personengefährdungen und Sachschäden an der Anlage führen.

- Niemals das Produkt in Betrieb nehmen, wenn nicht alle Sicherheitseinrichtungen des MVH 2.0 einwandfrei funktionieren bzw. betriebsbereit sind.
- Niemals das Produkt an einer Spannungsebene betreiben, die nicht der spezifizierten FU-Eingangsspannung entspricht.
- Niemals Antriebe an das Produkt anschließen, deren Bemessungsspannung und -strom nicht auf die Bemessungsgrößen des MVH 2.0 abgestimmt sind.
- Niemals das Produkt in Betrieb nehmen, wenn nicht sämtliche Parametereinstellungen des MVH 2.0 auf den angeschlossenen Antrieb und die Anwendung abgestimmt sind.
- Niemals das Produkt durch Hardware- und/oder Software-Komponenten modifizieren bzw. manipulieren, die nicht von AuCom spezifiziert sind.
- Niemals Ersatzteile verwenden, die nicht von AuCom spezifiziert sind.

1.3 ZIELGRUPPE UND QUALIFIKATION

Die Frequenzumrichter der MVH 2.0 Serie sind für ein qualifiziertes Fachpersonal in gewerblichen Bereichen unterschiedlicher Branchen bestimmt, in denen Frequenzumrichter zur Drehzahlsteuerung von Mittelspannungs-Drehstrommotoren eingesetzt werden.

Diese Betriebsanleitung richtet sich an das qualifizierte Fachpersonal für die Inbetriebnahme, Bedienung und die Wartung dieses Produktes. Das qualifizierte Fachpersonal ist gemäß seiner Ausbildung und Erfahrung in der Lage, Risiken bei der Verwendung des

Produktes und seinen Anwendungen zu erkennen und potenzielle Gefährdungen für Personen und Anlagenteile abzuwenden.

Zur Inbetriebnahme und den Betrieb verfügt das Produkt über vier verschiedene Benutzerebenen für unterschiedliche Aufgabenstellungen, die eine unterschiedliche Qualifikation und Autorisierung des Bedienpersonals erfordern.

BENUTZEREBENE "STANDARD" Das Fachpersonal verfügt über grundlegende Fachkenntnisse für Anwendungen von Frequenzumrichtern auf der Mittelspannungsebene zur Bedienung des MVH 2.0. Diese Benutzerebene erlaubt die Start/Stop-Steuerung von MS-Drehstrommotoren über den Frequenzumrichter.

Diese Benutzerebene erfordert *keine* Passworteingabe zur Bedienung des FU. Die Einweisung des Bedienpersonals erfolgt anhand dieser Betriebsanleitung.

BENUTZEREBENE "BEDIENER" Das Fachpersonal verfügt über erweiterte Fachkenntnisse für Anwendungen von Frequenzumrichtern auf der Mittelspannungsebene. Diese Benutzerebene erlaubt die Start/Stop-Steuerung von MS-Drehstrommotoren über den Frequenzumrichter, das Lesen sämtlicher Parametereinstellungen sowie die Berechtigung einen beschränkten Parameterbereich einzustellen (Bedienung und Wartung)

Diese Benutzerebene erfordert die Eingabe des entsprechenden Passwortes für den *Bediener*. Die Einweisung des Bedienpersonals erfolgt anhand dieser Betriebsanleitung sowie Schulung auf die erweiterte Anwendung des MVH 2.0.

BENUTZEREBENE "INGENIEUR" Das Fachpersonal verfügt über erweiterte Fachkenntnisse für Anwendungen von Frequenzumrichtern auf der Mittelspannungsebene. Diese Benutzerebene erlaubt die Start/Stop-Steuerung von MS-Drehstrommotoren über den Frequenzumrichter und das Lesen sowie Einstellen sämtlicher Parametereinstellungen (Inbetriebnahme, Bedienung und Wartung).

Diese Benutzerebene erfordert die Eingabe des entsprechenden Passwortes für den *Ingenieur*. Die Einweisung des Bedienpersonals erfolgt anhand der vollständigen technischen Dokumentation sowie Schulung durch Experten.

BENUTZEREBENE Diese Benutzerebene ist passwortgeschützt und obliegt ausschließlich dem Hersteller. "HERSTELLER"

1.4 SICHERHEITSHINWEISE

1.4.1 DIE FÜNF SICHERHEITSREGELN DER ELEKTROTECHNIK

Für alle Arbeiten an dem MVH 2.0 müssen die *fünf Sicherheitsregeln der Elektrotechnik* nach DIN VDE 0105 in der folgenden Reihenfolge angewendet werden:

- 1. Freischalten
- 2. Gegen Wiedereinschalten sichern
- 3. Spannungsfreiheit allpolig feststellen
- 4. Erden und kurzschließen
- 5. Benachbarte, unter Spannung stehende Teile abdecken oder abschranken

Die Aufhebung der fünf Sicherheitsregeln erfolgt in umgekehrter Reihenfolge.

1.4.2 SICHERER BETRIEB

INSPEKTION DER LIEFERUNG

WARNUNG

- Verwenden Sie den FU nicht, wenn sich Feuchtigkeit im FU-Schrank befindet, Teile fehlen, oder Teile beim Auspacken beschädigt wurden.
- Wenn die Packliste nicht mit der auf dem Typenschild angegebenen Modellnummer übereinstimmt, darf der FU nicht installiert werden.
- Wenn Sie den FU transportieren oder anheben, vergewissern Sie sich, dass das Transportmittel für das Gewicht und die Abmessungen des FU ausgelegt ist. Ist dies nicht der Fall, kann der FU bei der Handhabung beschädigt werden.

INSTALLATION

VORSICHT

- Befolgen Sie die Anweisungen in dieser Betriebsanleitung. Die Installation darf nur von qualifiziertem Fachpersonal durchgeführt werden.
- Installieren Sie den FU nur auf geeigneten Oberflächen (Metall oder Beton) und entfernt von brennbaren Materialien, um eine Brandgefahr zu vermeiden.
- Berühren Sie während der Installation nicht direkt die elektronischen Komponenten im Inneren des FU-Schranks, da dies zu elektrostatischen Schäden am FU führen kann.
- Installieren oder Entfernen Sie Leiterplatten nur unter ESDgerechten Bedingungen (Antistatikschutz).
- Ziehen Sie Schrauben und andere Teile gemäß den spezifizierten Drehmomenten an.
- Achten Sie darauf, dass keine Metallspäne, Drahtreste und andere Kleinteile in den FU-Schrank eindringen können, um Beschädigungen des FU während des Betriebs zu vermeiden.

ELEKTRISCHER ANSCHLUSS

Betrieb

WARNUNG

- Vergewissern Sie sich vor dem Anlegen der Netzeinspeisespannung, dass die Versorgungsspannung der Nennspannung des FU entspricht.
- Vergewissern Sie sich, dass die Hauptstromkreisverdrahtung korrekt angeschlossen ist und die Schrauben der Anschlussklemmen mit den spezifizierten Drehmomenten angezogen sind.
- Der FU darf erst dann unter Spannung gesetzt werden, wenn die Verdrahtung des Umrichters abgeschlossen und die Schranktüren geschlossen sind. Öffnen Sie niemals eine Schaltschranktür, wenn die Mittelspannungsversorgung eingeschaltet ist, um die Gefahr eines elektrischen Schlages zu vermeiden.
- Wenn der Automatikstart aktiviert ist, müssen entsprechende Sicherheitsvorkehrungen in der Peripherie des Antriebes getroffen werden, um Personengefährdungen und Sachschäden zu vermeiden.
- Sobald der FU eingeschaltet ist, stehen die Klemmen des FU unter Spannung. Dies gilt auch für den Stoppmodus. Berühren Sie die Klemmen nicht, da dies zu einem elektrischen Schlag führen kann.
- Trennen Sie die Spannungsversorgung für die Lüfter nicht, während der FU in Betrieb ist, da dies zu Überhitzung und Beschädigung des FU-Systems führen kann. Dies führt auch zu einer Abschaltung des Steuersystems.
- Bei wassergekühlten FU muss das vom Kunden gelieferte Kühlwasser den Spezifikationen entsprechen.
- Die Fehlermeldungen sollten erst zurückgesetzt werden, wenn sichergestellt ist, dass der Startbefehl deaktiviert ist. Ein Rücksetzen von Fehlermeldungen bei aktivem Startbefehl kann zu Personengefährdungen und Sachschäden führen.

WARTUNG UND INSPEKTION

WARNUNG

- Stellen Sie sicher, dass der FU-Ausgang isoliert und geerdet ist, bevor Sie mit Arbeiten am FU beginnen.
- Wenn die Last in Betrieb bleiben kann, während der FU gewartet wird, muss der FU vom Motor isoliert werden, um einen elektrischen Schlag zu vermeiden.
- Führen Sie eine Fehlersuche oder Wartung am FU niemals bei eingeschalteter Mittelspannung durch. Stellen Sie sicher, dass Sie den FU ausschalten, bevor Sie eine Schranktür öffnen, und befolgen Sie alle Verriegelungs- und Sicherheitshinweise.
- Um Verletzungen durch die Restspannung der Hauptstromkreiskondensatoren zu vermeiden, warten Sie mindestens 10 Minuten nach dem Abschalten oder Ausfall der Spannungsversorgung und vergewissern Sie sich, dass die Spannungsanzeigen an den Leistungszellen erloschen ist, bevor Sie Wartungs- und Inspektionsarbeiten durchführen.
- Wartungs-, Inspektions- und Instandsetzungsarbeiten dürfen nur von qualifiziertem Fachpersonal durchgeführt werden.

ENTSORGUNG

VORSICHT

Entsorgen Sie alle gebrauchten Komponenten oder Teile ordnungsgemäß.

Weitere

WARNUNG

Der FU darf NICHT modifiziert werden. Jede Änderung am FU obliegt ausschließlich dem Hersteller.

2 PRODUKTÜBERSICHT

.0(

2.1 WICHTIGE HINWEISE ZUM PRODUKT

Die Frequenzumrichter für Antriebe mit variabler Drehzahl (FU) der MVH 2.0 Serie bieten die folgenden Lösungen für den Einsatz von Mittelspannungsmotoren bzgl.:

EINSATZZWECK DES FU • intelligente Steuerung von Mittelspannungs-AC-Synchron- und Asynchronmotoren (Induktionsmotoren)

- Motor-Sanftanlauf (Verlängerung des Motor-Lebenszyklus)
- Motor-Drehzahlregelung
- Energieeinsparung durch optimierte Leistungsaufnahme des Motors bei verschiedenen Drehzahl- und Leistungsanforderungen
- Blindleistungsregelung beim Motorlauf

BRANCHEN T

- Typische **Branchen** für den Einsatz des MVH 2.0 sind: • Chemie/Petrochemie
 - Zement
 - Bergbau und Mineralien
 - Wasser/Abwasserprojekte)
 - Energieerzeugung
 - Metallurgie
 - Leichtindustrie
 - Lüftungs- und Klimatechnik
 - Weitere ...

ANWENDUNGSBEREICHE

Typische Anwendungsbereiche des MVH 2.0 sind:

Energieerzeugung	Chemie/Petrochemie	Bergbau und Mineralien
Booster-Gebläse	Belüftungsventilator	Main Ventilator
Saugzuggebläse	Saugzuggebläse	Axiallüfter
Kraftzuggebläse	Kraftzuggebläse	Entkalkungspumpe
Rohrleitungstransportpumpe	Wasserpumpe	Schlammpumpe
Wassereinspritzpumpe	Abwasserpumpe	Reinigungswasserpumpe
Speisewasserpumpe	Warmwasser-Umwälzpumpe	Beschickungspumpe
Unterwasserpumpe	Hebeanlage	Rührwerkspumpe
Ölförderpumpe	Reinigungswasserpumpe	Entwässerungspumpe
Sole-Pumpe	Wasserversorgungspumpe	Förderantrieb
Pumpe für zirkulierendes Wasser	Extruder	
Zement	Metallurgie	Kommunale Projekte
Ofenzuggebläse	Saugzuggebläse	Booster-Gebläse
Ofengasgebläse	Kraftzuggebläse	Kondenswasserpumpe
Abscheider-Ventilator	Hochofengebläse	Schlammpumpe
Ventilator für Zementmühlen	Luftstrahlgebläse	Wasserspeicherpumpe
Ventilator zur Entstaubung	Konverter-Ventilator	Pumpe für zirkulieren- des Wasser
Umwälzgebläse	Elektro-Ofengebläse	Kesselspeisepumpe
Gitterrost-Kühler	Schlackenspülpumpe	Verdichter
Ventilator für Rohmühlen	Beschickungspumpe	

Mühle für Rohmaterial	Wasserförderpumpe	
Kohlemühle	Schlammpumpe	
Klinkerkühler-Ventilator	Entkalkungspumpe	
Ofenantrieb	Sauerstoff-Kompressor	
Saugzuggebläse		
Leichtindustrie	Weitere	
Gasgebläse	Pumpenprüfstand	
Hydraulische Pumpe	FU-Stromversorgungsprüf- stand	
Reinigungspumpe	Motorprüfstand	
Axialströmungspumpe	Windkanal-Test	
Kompressor	Knetmaschine	

 Tab. 2-1
 MVH 2.0 - Typische Anwendungsbereiche

MS-FREQUENZUMRICHTER MVH 2.0 – GESAMTANSICHT 2.1.1

Der FU-Schrank besteht im Wesentlichen aus den folgenden Einheiten:

- Trafoschrank mit Multi-Level-Transformator
- Zellenschrank mit Leistungszellen für die FU-Leistungselektronik .
- Steuer-/Anschlussfeld mit Bedien- und Anzeigeelementen im Niederspannungsteil (NS) sowie Anschlüssen für Netzeinspeisung und Motorabgang mit optionalen Schalt- und Trenneinrichtungen im geschotteten Mittelspannungsteil (MS)
- Kühlventilatoren für den Trafoschrank und den Zellenschrank

Bei Frequenzumrichtern mit geringerer Leistung (kVA) befinden sich der Multi-Level-Transformator und die Leistungszellen in einem kombinierten Schrankfeld. Dies gilt für den Schranktyp:

ACC - AuCom Compact Cabinet •

Abb. 2-1 Typisches integriertes FU-Schrankdesign: ACC-AuCom Compact Cabinet a) Vorderansicht b) Rückansicht

1 Kombinierter Transformator-/Leistungszellenschrank 2

3

4

Kühlventilatoren

Anschluss-/Schaltfeld (Mittelspannung)

Steuerfeld mit Bedien- und Anzeigeelementen (z. B. Bedieneinheit (HMI) mit Touchscreen (Niederspannung)

Bei Frequenzumrichtern mit größerer Leistung (kVA) befinden sich der Multi-Level-Transformator und die Leistungszellen in separaten Schrankfeldern. Dies gilt für die Schranktypen:

- AFA AuCom Front Access und .
- ADA AuCom Double Access.

Abb. 2-2 Typisches separiertes FU-Schrankdesign: AFA-AuCom Front Access a) Vorderansicht b) Rückansicht

(7

Kühlventilatoren

- 3 Leistungszellenschrank (Schranktüren nur an der Vorderseite)
- 4 Anschluss-/Schaltfeld (Mittelspannung)
- Steuerfeld mit Bedien- und Anzeigeelementen (z. B. Bedieneinheit (HMI) mit 6 Touchscreen (Niederspannung)
- Optionale Kabeleinführung MS-Zuleitung von oben (Kundenseite) 6
 - Optionale Kabeleinführung Motorabgang von oben (Kundenseite)

Abb. 2-3 Typisches separiertes FU-Schrankdesign: ADA-AuCom Double Access a) Vorderansicht b) Rückansicht

1 Trafoschrank

6

Kühlventilatoren

3 Leistungszellenschrank (Schranktüren nur an der Vorder- und Rückseite)

4 Anschluss-/Schaltfeld (Mittelspannung)

Steuerfeld mit Bedien- und Anzeigeelementen (z. B. Bedieneinheit (HMI) mit Touchscreen (Niederspannung)

=

HINWEIS

Der ADA-Schranktyp ist ebenfalls mit einer: optionalen Kabeleinführung MS-Zuleitung von oben (Kunden-≻ seite) und einer ≻ optionalen Kabeleinführung Motorabgang von oben (Kundenseite) erhältlich.

2.1.2 GEFAHRENBEREICHE

LEISTUNGSZELLENSCHRANK

Im Inneren des Leistungszellenschranks sind während der FU-Bereitschaft sowie des FU-Betriebes ständig gefährliche, hohe Spannungen an den entsprechenden Anschlüssen und Leiterbahnen vorhanden.

Der Leistungszellenschrank verfügt über Schranktüren als Servicezugang für Wartungsund Instandsetzungsarbeiten. Jede Tür des Leistungszellenschranks ist abschließbar und verfügt über einen Türkontaktschalter. Das Öffnen der Türen des Leistungszellenschranks während der FU-Bereitschaft sowie des FU-Betriebs ist untersagt!

Falls während des FU-Betriebs oder der FU-Bereitschaft eine dieser Türen aufgeschlossen und geöffnet wird, öffnet der Türkontakt und der Umrichter wird – sofern parametriert (s. Parameter *Offene Schranktür: Störungsauswahl*) – sofort ab- und freigeschaltet.

WARNUNG

Gefahr durch elektrischen Schlag!

Für die Parametereinstellung *Offene Schranktür: Störungsauswahl = Alarm* besteht Lebensgefahr oder Verletzungsgefahr durch elektrischen Schlag bei Berührung von unter Spannung stehenden Teilen im Leistungszellenschrank.

- Der FU wird grundsätzlich mit der Werkseinstellung: Offene Schranktür: Störungsauswahl = Fehler ausgeliefert.
- Die Verwendung des FU mit der Parametereinstellung: Offene Schranktür: Störungsauswahl = Alarm ist nicht zu empfehlen, liegt jedoch im Ermessen und in der Verantwortung des Anwenders!

WARNUNG

Gefahr durch elektrischen Schlag!

An der Leistungszelle liegt auch nach dem Ausschalten des FU noch eine gefährliche Restspannung an den Eingangsklemmen R, S, T an.

Verletzungsgefahr durch elektrischen Schlag bei Berührung von unter Spannung stehenden Teilen an der Leistungszelle.

- Ausschalten der Mittelspannungseinspeisung durch vorgelagerte Hauptschaltelement.
- > Anwendung der fünf Sicherheitsregeln
- Warten Sie mindestens 10 Minuten nachdem die Statusanzeige der Leistungszelle erloschen ist, bevor Sie mit Arbeiten an den Leistungszellen beginnen.

2.1.3 Konformität

EU-Konformitätserklärung

HOTOR CONTROL SPECIALISTS	
Applied Motor Controls	
EU	I-Konformitätserklärung
	(Directive 2014/30/EU)
Gerätetyp/Produkt:	MVH Variable Frequency Drive
Hersteller:	AuCom MCS GmbH & Co.KG
Anschrift:	Borsigstraße 6
	48324 Sendenhorst
Die alleinige Verantwortung Hersteller.	für die Ausstellung dieser Konformitätserklärung trägt der
Gegenstand der Erklärung:	MVH 2.0 (Full Drive); MVH S 2.0 (Start Drive); MVH D 2.0 (Dual Drive)
Verfügbare und im Producto	ode vom 10/07/2023 gelistete Varianten sind eingeschlossen.
Der oben beschriebene Gege Harmonisierungsrechtsvorso	enstand der Erklärung erfüllt die einschlägigen hriften der Union.
2014/30/EU: RICHTLINIE 20 vom 26. Februar 2014 zur Ha die elektromagnetische Vert 29/03/2014	14/30/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES armonisierung der Rechtsvorschriften der Mitgliedstaaten über räglichkeit; Official Journal of the European Union L96/79,
Die Konformität mit der Richtlinie Anforderungen der folgenden Nor	wird durch die vollständige Einhaltung aller für das Produkt geltenden men nachgewiesen:
IEC-61800-3:2017: Drehzahlverän einschließlich spezieller Prüfverfal IEC-61800-4:2002 Drehzahlveränd Festlegungen für die Bemessung v IEC-61800-5-2:2016: Elektrische L an die Sicherheit – Funktionale Sic	derbare elektrische Antriebssysteme - Teil 3: EMV-Anforderungen hren derbare elektrische Antriebe - Teil 4: Allgemeine Anforderungen; von Wechselstrom-Antriebssystemen über 1 000 V AC und höchstens 35 Kv eistungsantriebssysteme mit einstellbarer Drehzahl - Teil S-2: Anforderunge herheit
Unterzeichnet für und im N	amen der AuCom MCS GmbH & Co.KG
Sendenhorst 10/07/2023	STITE AND COM

NORMEN UND STANDARDS

Standard	Definition
IEC 62271-200:2011	Mittelspannungs-Schaltgeräte und -Schaltanlagen – Teil 200: Metallgekapselte Wechselstrom-Schaltanlagen für Bemes- sungsspannungen über 1 kV bis einschließlich 52 kV
IEC 61439-1:2020	Niederspannungs-Schaltgerätekombinationen – Teil 1: Allge- meine Festlegungen; Beiblatt 2: Verfahren zum Nachweis der Erwärmung von Niederspannungs-Schaltgerätekombinationen durch Berechnung
IEC 61439-2:2020	Niederspannungs-Schaltgerätekombinationen - Teil 2: Ener- gie-Schaltgerätekombinationen
IEC 60073-2002	Grund- und Sicherheitsregeln für die Mensch-Maschine- Schnittstelle, Kennzeichnung - Codierungsgrundsätze für An- zeigengeräte und Bedienteile
IEC 60204-11: 2018	Sicherheit von Maschinen - Elektrische Ausrüstung von Ma- schinen - Teil 11: Anforderungen an Ausrüstung für Spannun- gen über 1000 V Wechselspannung oder 1500 V Gleichspan- nung, aber nicht über 36 kV
IEC 60529: 2013	Schutzarten durch Gehäuse (IP-Code)
IEC 60664-1: 2020	Isolationskoordination für Betriebsmittel in Niederspannungs- Stromversorgungssystemen - Teil 1: Grundsätze, Anforderun- gen und Prüfungen
IEC 61800-3: 2019-04	Drehzahlveränderbare elektrische Antriebssysteme - Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren
IEC 61800-4: 2002	Drehzahlveränderbare elektrische Antriebe - Teil 4: Allge- meine Anforderungen; Festlegungen für die Bemessung von Wechselstrom-Antriebssystemen über 1000 V AC und höchs- tens 35 kV
IEC 61800-5-1: 2007+A1:2016	Elektrische Leistungsantriebssysteme mit einstellbarer Dreh- zahl - Teil 5-1: Anforderungen an die Sicherheit - Elektrische, thermische und energetische Anforderungen
IEC 61800-5-2: 2016	Elektrische Leistungsantriebssysteme mit einstellbarer Dreh- zahl - Teil 5-2: Anforderungen an die Sicherheit - Funktionale Sicherheit
IEEE 519: 2022	Empfohlene Praktiken und Anforderungen für die Oberwellen- steuerung in Starkstromanlagen

Tab. 2-2Normen und Standards

2.1.4 KENNZEICHNUNG DES PRODUKTES

TYPENSCHILD

Sämtliche relevanten Angaben zur Beschreibung des Produktes MVH 2.0 sind auf dem Typenschild zusammengefasst. Das Typenschild ist an der Außenseite des FU-Schrankes angebracht und weist die folgenden Informationen aus.

Abb. 2-4 MVH 2.0 - Typenschild

1 Firmenlogo des Herstellers

- 2 Technische Produktdaten
- 3 Produktnormen (IEC)

Kategorie der Betriebsverfügbarkeit (LSC: Loss of service continuity)

- 4 Kategorie5 QR-Code
- 6 CE-Kennzeichnung
- Webseite des Herstellers
- 8 Herstelleradresse

TECHNISCHE PRODUKTDATEN

Technische Angabe	Beschreibung
Rated Voltage value	Netzanschlussspannung
Rated current / power	Nennstrom/Nennleistung am FU-Ausgang
Frequency	Netzanschlussfrequenz
Power frequency voltage	Stehwechselspannung
Lightning impulse voltage	Stehblitzstoßspannung
Rated short time current	Bemessungskurzzeitstrom
Peak withstand current	Bemessungsstoßstromfestigkeit

Technische Angabe	Beschreibung
Current	Bemessungsstrom (FU-Ausgang)
Operating voltage	Bemessungsspannung (FU-Ausgang)
Control voltage	Steuerspannung
Auxiliary voltage	Hilfsspannung
Year of Manufacture	Baujahr
Serial number	Seriennummer
LSC x	Loss of Service Continuity: Klasse x
IPxx	IP-Schutzart gemäß IEC 60529:1989
Weight	Gewicht des FU-Systems

Tab. 2-3 Technische Daten des Typenschildes

QR-Cope Der auf dem Typenschild abgebildete QR-Code enthält neben den Daten des Typenschildes weitere Informationen zum ausgelieferten Produkt MVH 2.0:

Der QR-Code kann mit der Kamera eines Smartphones oder eines PC/Notebook gescannt werden. Nach dem Scanvorgang wird automatisch auf die folgende AuCom-Webseite verlinkt:

https://www.aucom.com/contact-us/support-enquiry

Über diesen Link kann eine Support-Anfrage für weitere Informationen eingereicht werden.

PRODUKTCODE

* auf Anfrage!

* siehe nachstehende Tabelle *Bemessungsströme*

*** siehe nachstehende Tabellen Verfügbare Netz-Nennspannungen am FU-Eingang und Verfügbare Bemessungsspannungen des FU

Ν

= ohne Hauptschütz

ND = ohne Trenneinrichtung

F1 = Sicherungen

CF = Trenner mit Sicherungen C1 = Trenner ohne Sicherungen

Tab. 2-4 Bestellkennungen und Bestelloptionen im Produktcode

HINWEISE ZUR MODELLAUSWAHL

Die Auswahl des Modells für den MS-Frequenzumrichter hängt von dem anzutreibenden Motortyp, den Motorleistungen und den Lastmerkmalen ab. Für spezielle oder untypische Lasten, Motoren oder Umgebungen sollten die Benutzer die folgenden Hinweise und Empfehlungen befolgen.

Extreme Umgebungsbedingungen Beim Einsatz in extremen Umgebungen, z. B. bei hohen Umgebungstemperaturen oder in großer Höhe (> 1500 m) und Umgebungstemperaturen (> 40 °C), muss die Leistung des MS-Frequenzumrichters reduziert werden. Dies kann dazu führen, dass ein FU mit einer höheren Nennleistung für die Anwendung erforderlich ist (vgl. Bestellkennung 7).

VORSICHT

Der MS-Frequenzumrichter darf nicht in explosionsgefährdeten Bereichen aufgestellt und betrieben werden, da seine Konstruktion nicht den Anforderungen für den Betrieb in explosionsgefährdeten Bereichen entspricht!

- Die angeschlossene Last bestimmt dem Ausgangsstrom den der FU liefern muss.
- Die vorstehenden Empfehlungen decken nicht alle Fälle von speziellen Lasten und Motoren ab. Wenden Sie sich an AuCom oder Ihren örtlichen Lieferanten, um die richtige Modellauswahl zu bestätigen.

BESTELLKENNUNGEN UND BESTELLOPTIONEN

BESTELLKENNUNG 1 Name der Produktlinie des Frequenzumrichters (FU)

BESTELLKENNUNG 2 Auswahl des FU gemäß dem in der Anwendung eingesetzten Motortyp

Die Bestellkennung 2 dient der Kennzeichnung der Anwendung für den der Frequenzumrichter eingesetzt werden soll. Die technische Ausführung des FU unterscheidet sich nicht.

BESTELLKENNUNG 3 Auswahl des FU gemäß IEC-Standard oder UL-Standard

I = IEC

Der Frequenzumrichter entspricht bzgl. der Produktsicherheit den relevanten, gültigen Normen der *International Electrotechnical Commission (IEC).*

U = UL

Der Frequenzumrichter entspricht bzgl. der Produktsicherheit den relevanten, gültigen Normen der amerikanischen Normungsorganisation *National Electrical Manufacturers Association (NEMA).*

 BESTELLKENNUNG 4
 Auswahl der FU-Nennfrequenz

 Die Auswahl der Bestelloption ist abhängig von der Frequenz des Mittelspannungsnetzes am Einsatzort zu treffen. Die technische Ausführung des Frequenzumrichters unterscheidet sich bzgl. der Bestelloptionen nicht.

BESTELLKENNUNG 5

Auswahl der Nennspannung am FU-Eingang

Die folgende Tabelle gibt die für den FU verfügbaren Nennspannungen des Einspeisenetzes an seinem Eingang an (andere Nennspannungen auf Anfrage):

Netz-Nennspannung Uerr***			
Bestelloption	[V]	Bestelloption	[V]
023	2300	072	7200
033	3300	083	8300
042	4160	100	10000
048	4800	110	11000
050	5000	120	12000
060	6000	125	12470
066	6600	132	13200
069	6900	138	13800

Tab. 2-5 Verfügbare Netz-Nennspannungen am FU-Eingang

BESTELLKENNUNG 6

Auswahl der Bemessungsspannung Ueff

Die folgende Tabelle gibt die für den FU verfügbaren Bemessungsspannungen (Nennspannungen) an seinem Ausgang an (andere Bemessungsspannungen auf Anfrage):

Bemessungsspannung Ueff***			
Bestelloption	[V]	Bestelloption	[V]
023	2300	072	7200
033	3300	083	8300
042	4160	100	10000
048	4800	110	11000
050	5000	120	12000
060	6000	125	12470
066	6600	132	13200
069	6900	138	13800

Tab. 2-6 Verfügbare Bemessungsspannungen des FU

BESTELLKENNUNG 7

Auswahl des Bemessungsstroms für den FU:

Bemessungsstrom Ieff**			
Bestelloption	[A]	Bestelloption	[A]
0031	31	0360	360
0040	40	0364	364
0048	48	0400	400
0061	61	0425	425
0077	77	0462	462
0086	86	0500	500
0096	96	0550	550
0104	104	0600	600
0115	115	0660	660
0130	130	0750	750
0154	154	0800	800
0165	165	0960	960
0173	173	1000	1000
0195	195	1200	1200
0205	205	1250	1250
0220	220	1445	1445
0243	243	1540	1540
0304	304		

Tab. 2-7 Verfügbare Bemessungsströme des FU

FU-Bemessungsströme left < 250A:

Der FU wird ohne Vorladesystem geliefert.

FU- Bemessungsströme 250 A ≤ left < 500 A:

Der FU beinhaltet eine integrierte Einrichtung zur Vorladung der Leistungszellen.

FU- Bemessungsströme leff≥ 500 A:

Der Frequenzumrichter wird mit einem zusätzlichen Transformator-Vorladefeld ausgestattet.

BESTELLKENNUNG 8 Auswahl der FU-Kühlungsart

Bestelloption Wassergekühlt auf Anfrage!

BESTELLKENNUNG 9 Auswahl des Schrank-Typs

ſ			
1	=	_	
1	_		
L	_	_	
L	-		

HINWEIS

Jeder Schranktyp ist mit einem Steuer-/Anschlussfeld für den Anschluss der Mittelspannungseinspeiseleitung sowie der kundenseitigen Motoranschlussleitung ausgestattet.

ACC = AuCom Compact-Schrank

(AuCom Compact Cabinet) Der Schrank-Typ verfügt über einen kombinierten Transformator-Leistungszellenschrank. Leitungszugang sowie Leitungsabgang befinden sich im Boden des Einspeisefeldes. Der Servicezugang erfolgt über Türen an der Frontseite des FU.

AFA = AuCom nur frontseitig. Zugang

(AuCom Front Access) Der Schrank-Typ verfügt über einen Transformatorschrank sowie einen Schrank für die Leistungszellen. Der Leitungszugang (MS) befindet sich auf der

Oberseite des Einspeisefeldes; die Motorleitung (Leitungsabgang) wird in dem seitlichen Anbau des Einspeisefeldes nach unten ausgeführt. Der Servicezugang erfolgt über Türen an der Frontseite des FU.

ADA = AuCom beidseitiger Zugang

(AuCom Double Access) Der Schrank-Typ verfügt über einen Transformatorschrank sowie einen Schrank für die Leistungszellen. Der Leitungszug- und Abgang befindet sich im Boden des Einspeisefeldes. Der Servicezugang erfolgt über Türen an der Front- und Rückseite des FU.

- BESTELLKENNUNG 10 Auswahl des FU bzgl. einer Trenneinrichtung für die Mittelspannung am FU-Eingang
- *Bestellkennung* 11 Auswahl des FU bzgl. eines Hauptschützes/Leistungsschalter für die Mittelspannung am FU-Eingang

BESTELLKENNUNG 12 Auswahl des FU bzgl. der Bypass-Optionen für die Leistungszellen

NCB = ohne Zellen-Bypass

MCB = Zellen-Schütz-Bypass

Jede Leistungszelle verwendet ein integriertes *Schütz (K)* als Zellen-Bypass, welches den Zellenausgang der fehlerhaften Leistungszelle überbrückt.

ICB = IGBT Zellen-Bypass

Jede Leistungszelle verwendet zwei integrierte *IGBTs* als Zellen-Bypass, welches den Zellenausgang der fehlerhaften Leistungszelle kurzschließt.

RMB = redundantes Zellen-Schütz-Bypass:

Es wird *eine zusätzliche Leistungszelle pro Phase* eingesetzt. Sämtliche Leistungszellen verwenden ein internes *Schütz-Bypass (K)* als Zellen-Bypass.

RIB = redundanter IGBT Zellen-Bypass

Es wird *eine zusätzliche Leistungszelle pro Phase* eingesetzt. Sämtliche Leistungszellen verwenden zwei interne *IGBTs* als Zellen-Bypass.

	HI	NWEIS
\equiv	۶	Die g zellei
	~	- · ·

Die gewählte Bestelloption bezieht sich auf sämtliche Leistungszellen des FU.

- Für Leistungszellen gemäß den Bestelloptionen MCB und ICB wird die im Fehlerfall die Funktion der Nullpunktverschiebung angewendet.
- Für Leistungszellen gemäß den Bestelloptionen RMB und RIB steht im Fehlerfall die volle Leistung des FU weiterhin zur Verfügung.

BESTELLKENNUNG 13 Auswahl des FU bzgl. Bypass-Optionen den gesamten FU

NB = ohne FU-Bypass

Der Motorbetrieb ist ausschließlich über den Frequenzumrichter (FU) möglich.

MB = DOL-Start ohne FU Direktstart des Motors (engl.: direct online start, DOL) am MS-Netz möglich.

SB = automatischer Bypass mit FU Der Motor-Start erfolgt über den Frequenzumrichter. Danach wird der Motor über einen FU-Bypass direkt an das MS-Netz geschaltet.

SB2 = automatischer Multi-Motor-Bypass mit FU

Dieser FU ermöglicht den sequenziellen Start von mehreren Motoren. Jeder Motor wird überbrückt, nachdem seine Startsequenz beendet ist.

Bestellkennung 14 Auswahl des FU bzgl. Trenn-/Erdungsschalter im FU-Abgang

2.2 PRODUKTDATEN (TECHNISCHE DATEN)

2.2.1 LEISTUNGSMERKMALE DES MVH 2.0

FUNKTIONEN

Die Frequenzumrichter (FU) der MVH 2.0 Serie sind für die Drehzahlregelung und Steuerung von Mittelspannungs-Drehstrommotoren geeignet. Der FU verfügt über die folgenden Funktionen und Merkmale:

SPANNUNGSEBENEN FU-Anwendungen für Mittelspannungsebenen von 2,3 kV bis 13,8 kV

REGELBARERDie Motor-Drehzahlregelung erfolgt über einen regelbaren Frequenzbereich vonFREQUENZBEREICH0 bis 80 Hz.

Motorsteuerungsmethoden

- Asynchronmotor (Induktionsmotor) gemäß erweiterter U/f-Steuerkennlinie
 - Synchronmotor (fremderregt, permanent erregt, Reluktanzmotor) gemäß erweiterter U/f-Steuerkennlinie
 - Asynchronmotor (Induktionsmotor) mit/ohne Drehzahlsensor gemäß geschlossener/offener Vektorregelung
- Synchronmotor mit/ohne Lagesensor gemäß geschlossener/offener Vektorregelung
- *START-/STOP-MODI* Verschiedene, einstellbare Start- und Stop-Charakteristiken für den Motor wie Beschleunigungs- und Abbrems-Rampen sowie Motorauslauf
- "SCHNELLSTART" Aufschaltung des FU auf einen drehenden Motor

n ODER f*-* Der erforderliche Drehzahl/Frequenz-Sollwert kann entweder manuell Vor-Ort über das *SolLWERTVORGABE* Touchscreen (HMI) oder im Fernbetrieb über einen analogen Eingang (AI), digitale Eingänge (DI) oder über das Prozessleitsystem (PLS) vorgegeben werden.

- *FU-BETRIEBSARTEN* Der FU kann entweder manuell Vor-Ort über das Touchscreen (HMI) oder im Fernbetrieb über ein Prozessleitsystem (PLS) oder über digitale Eingänge (DI) gesteuert werden.
- *PROZESSLEITSYSTEM (PLS)* Der FU kann in ein Prozessleitsystem eingebunden werden. Hierfür stehen die Kommunikationsprotokolle: Modbus, Profibus und Profinet zur Verfügung (weitere auf Anfrage).
 - *Simulationsmodus* Für Testzwecke besitzt der FU einen Testmodus der einen Simulationsbetrieb, ohne aufgeschaltete Mittelspannung.
- VERSCHIEDENER LASTARTEN Die Motorsteuerung des FU kann optimal an verschiedene Lastarten wie z. B. Ventilatoren oder Pumpen angepasst werden.
- STATISCHE UND DYNAMISCHEAutomatische Bestimmung der Motorparameter für die Vorbelegung der Regelungspara-
meter. bei fehlenden Motordaten für Leerlaufstart und Start unter Last
 - Motor-RückwärtsLauf Drehrichtungsumkehr des Motors über den FU
 - VERSTÄRKUNG DESAnhebung des Startdrehmomentes bis 10 Hz für Asynchronmotoren und bis 5 Hz für Syn-
chronmotorenDREHMOMENTSchronmotoren
 - VERSTÄRKUNG DERVerhindert Überspannungen in den Leistungszellen im Regelbetrieb bei Antrieben mit
größerer Lastträgheit (generatorischer Betrieb des Motors)

BEGRENZUNG DES FU-
AUSGANGSSTROMSEinstellung des maximalen FU-Ausgangsstromes, um den FU optimal an die Last anzu-
passen

PRODUKTÜBERSICHT

Synchrone Umschaltfunktion	Ermöglicht die sanfte und stoßfreie Umschaltung des Motors zwischen FU-Betrieb und Netzbetrieb (mit optionalem Synchron-Schaltschrank).
Master-/Slave- Steuerungs- /Regelungsfunktionen	FU-Doppel- oder Multi-Frequenzumrichterbetrieb (siehe Master-Slave-Einstellungen).
Umschaltbare Motor- Parametersätze	Der FU verfügt über vier verschiedene, umschaltbare Motorparametersätze, zwischen denen z. B. bei FU-Mehrfachbetrieb umgeschaltet werden kann.
Selbstanpassung der Ausgangsspannung	Anpassung der FU-Ausgangsspannung an den Motor-Betriebspunkt bei schwankender Eingangsspannung
Steuerung der Erregung für Synchronmotoren	Steuerung/Regelung des Erregersystems für Synchronmotoren über das Touchscreen (HMI) oder automatisch über einen konstanten Leistungsfaktor.
Funktion für kurzzeitigen Netzausfall	Der FU kann kurzzeitige Ausfälle der MS-Netzspannung überbrücken, ohne abzuschalten.
Automatischer Neustart Nach Netzausfall	Nach Wiederkehr der Netzspannung nach einem Netzausfall oder nach kurzzeitigen Netzausfällen kann der FU so programmiert werden, dass er automatisch wieder anläuft (sofern der Startbefehl noch aktiv ist).
Automatische Rampeneingriff	Überwachung des FU-Ausgangsstroms (Überstomkriterium) sowie der DC-Spannung der Leistungszellen (Überspannungskriterium) und Anpassung der Beschleunigungs- bzw. Abbremsrate.
Motor-Überlastschutz – Thermisches Abbild	Bei großer Überlast bzw. lang andauerndem Überstrombetrieb des Motors schützt der FU den Motor anhand eines thermischen Abbildes des Motors mit inverser Auslösecharakte- ristik.
Ausblendbereiche für unerlaubte Frequenzen	Einstellbare Frequenzbereiche, in denen ein Betrieb des Motors nicht erlaubt ist, können gesperrt werden.
Vorladung der Leistungszellen und Transformator- Vormagnetisierung	Transformator-Vorladefeld zur Aufladung der Leistungszellen-Kondensatoren und Vor- magnetisierung des Multi-Level-Transformators, um hohe Einschaltströme (Inrush) zu reduzieren (für Bemessungsströme \geq 500 A).
	Optionen
Leistungszellen-Bypass- Technik	Optionale Überbrückung von defekten Leistungszellen ohne FU-Abschaltung, wahlweise als Schütz-Bypass oder elektronischer IGBT-Bypass.
Neutralpunkt- Verschiebungstechnik	Zusätzlich zur Option des Leistungszellen-Bypass: bei Ausfall einer Leistungszelle, auto- matische Verschiebung des Neutralpunktes der FU-Ausgangsspannung, um eine symmetrische Motorspannung zu gewährleisten.
SCHUTZ- UND STEUERSYSTEM	Optionales Schutz- und Steuersystem mit speziellen Motor-, Transformator und Leitungsschutzfunktionen sowie erweiterten Steuerungsfunktionen, z.B. für die syn- chrone Umschaltung des Motors zwischen FU und MS-Netz.
	STÖRUNGEN: FEHLER- UND ALARMMELDUNGEN
	Der MVH 2.0 erfasst eine Vielzahl von möglichen Störungen während des FU-Betriebs. Die Ursachen von Störungen werden durch entsprechende <i>Alarmmeldungen</i> bzw. <i>Fehlermel-dungen</i> auf dem Display der Bedieneinheit (HMI) angezeigt. Diese Meldungen können über

die verschiedenen Kommunikationsprotokolle an das Prozessleitsystem (PLS) übertragen werden.

Sämtliche Alarm- und Fehlermeldungen werden im *Ereignisrekorder* mit Datum, Zeitstempel nichtflüchtig gespeichert.

- **ALARMMELDUNGEN** Alarmmeldungen sind Informationen über aktuelle Störungsursachen, die den FU-Betrieb nicht abschalten und werden automatisch zurückgesetzt, sobald die Alarmursache beseitigt ist.
- **FEHLERMELDUNGEN** Fehlermeldungen sind Informationen über aktuelle Störungsursachen, die den FU-Betrieb abschalten bzw. einen aktiven Motorstartbefehl blockieren. Nach Beseitigung ihrer Fehlerursache muss die Fehlermeldung zurückgesetzt werden, bevor der FU den Betrieb (Motorstart) wieder aufnehmen kann.

2.2.2 MABE UND GEWICHTE

Die Abmessungen, das Gewicht und der Raumbedarf für einen FU-Schrank der MVH 2.0 Serie hängt ab von:

- dem FU-Schranktyp,
- der Bemessungsleistung des FU sowie
- der Kühlungsart des FU.

Gemäß dieser Kriterien ergibt sich eine hohe Varianz für die Abmessungen des FU-Schranks und seines Gewichts, so dass sich die genauen Angaben erst mit der Festlegung des Produktcodes ergeben.

Für detaillierte Angaben wenden Sie sich bitte an AuCom.

2.2.3 UMGEBUNG

INSTALLATIONSUMGEBUNG

VORSICHT

Der MVH 2.0 darf nicht in explosionsgefährdeten Bereichen aufgestellt und betrieben werden, da seine Konstruktion nicht den Anforderungen für den Betrieb in explosionsgefährdeten Bereichen entspricht!

Um die Verfügbarkeit des MVH 2.0 zu maximieren und eine lange Lebensdauer zu gewährleisten, muss die Installationsumgebung des FU den folgenden Anforderungen entsprechen:

- Installieren Sie das Gerät nur in solchen Innenräumen, die nicht mit korrosiven Gasen, entflammbaren Gasen, leitfähigem Staub, tropfenden Flüssigkeiten, Salz und Verbrennungsdämpfen in Berührung kommen.
- Die Umgebungstemperatur sollte im Bereich von -5... 40 °C liegen. Liegt die Umgebungstemperatur außerhalb dieses Bereiches, müssen Vorkehrungen getroffen werden, um eine sichere und zuverlässige Temperaturkontrolle der Ausrüstung zu gewährleisten.
- Der Standort sollte über Schutzmaßnahmen verfügen, die das Eindringen von Kleintieren wie z. B. Schlangen und Mäusen zu verhindern. Alle Leitungsdurchführungen, die in die FU-Schränke hinein- oder aus herausführen, *müssen* entsprechend abgedichtet werden, um das Eindringen von Ungeziefer (einschließlich Insekten wie z. B. Spinnen) zu verhindern.
- *UMGEBUNGSFREIRAUM* Um einen reibungslosen Durchfluss von Kühlluft zu gewährleisten sowie für eine einfache Bedienung und Wartung muss ein angemessener Freiraum (Servicezone) um den FU herum vorhanden sein.

Abb. 2-5 Umgebungsfreiraum f
ür den Schrank:
a) zweiseitige Servicezone
b) einseitige Servicezone

Wartungsfreiraum vorne: >1600 mm Wartungsfreiraum hinten

- Wartungsfreiraum hinten a) Zweiseitige Servicezone: > 1600 mm
 - b) Einseitige Servicezone: > 100 mm

2.2.4 TECHNISCHE DATEN

Angabe	Spezifikation	
MVH 2.0 Nennleistung	210 28000 KVA	
Nennspannung	2,3 13,8 kV (-10% +5 %)	
Nennfrequenz (FU-Eingang)	50/60 Hz (-10 % +10 %)	
Hilfsspannung	IEC: 400 V AC, 3-phasig, 50/60 Hz	
Steuerspannung	230 V AC, 50/60 Hz (andere Spannungen auf Anfrage)	
Nennleistungsfaktor (FU-Eingang)	≥0,96	
Wirkungsgrad	> 96 98 % abhängig von den ausgewählten Optionen	
Frequenzbereich (FU-Ausgang)	0 80 Hz	
Genauigkeit Drehzahl	 ± 0,5 % (Vektorregelung mit offenem Regelkreis) ± 0,1 % (Vektorregelung mit geschlossenem Regelkreis) ± 0,5 % (erweiterte U/f-Kennlinie mit Schlupfkompensation) 	
Unverzögerter Überstromschutz	150 % (bez. auf FU-Bemessungsstrom)	
Überlast	120 % Überlast für 120 s (bez. auf Bemessungsstrom)	
Drehmomentbegrenzung	10 % 150 % (bez. auf Motornennstrom)	
Analoge Eingänge	4 Stck.: 0/4 20 mA	
Analoge Ausgänge	4 Stck.: 0/4 20 mA	
PLS-Kommunikationsschnittstelle (Prozessleittechnik)	RS485 Schnittstelle (elektrisch, galvanisch isoliert), Kommunikationsprotokolle: Modbus RTU, Profinet, Profibus DP (optional*), Modbus TCP (optional*)	
Hochlauframpe, Bremsrampe	5 6000 s (parametrierbar)	
Digitale Ein- und Ausgänge	14 Digitale Eingänge (DI), 22 Digitale Ausgänge (DO)	
Betriebstemperatur	-5 +40 °C (andere Temperaturbereiche auf Anfrage)	
Lagerungstemperatur	-25 +55 °C	
Transporttemperatur	-25 +55 °C	
Kühlungsart	Fremdkühlung mit Ventilatoren (AF)	
Rel. Luftfeuchtigkeit	< 95 %, nicht-kondensierend	
Höhe	≤ 1000 m Bei einer Höhe von mehr als 1000 m ist der Strom und die Spannung des FU pro 100 m um 1 % zu reduzieren.	
Staub	Nicht leitfähig, nicht ätzend, < 6,5 mg/dm ³	
Schutzgrad	IP30/Тур 1	
Schrankfarbe	ANSI 61 Grau: RAI 7035	

* Zusätzliche Kommunikationsmodule erforderlich!

Tab. 2-8MVH 2.0 - Technische Daten

HINWEIS

Für Informationen, die über die vorstehende Tabelle hinausgehen, wenden Sie sich bitte an AuCom oder Ihren örtlichen Lieferanten.

2.3 LIEFERUMFANG

2.3.1 LUFTGEKÜHLTE FU-SCHRÄNKE

- 1 x FU-Schrank
- Anzahl der Kühlventilatoren gemäß Schranktyp (die Kühlventilatoren werden für den Transport separat verpackt)
- Anzahl der Leistungszellen gemäß Schranktyp (die Leistungszellen werden für den Transport separat verpackt, wenn der Bemessungsstrom größer 250 A ist).

Zubehör:

- 1 x Schaltkurbel für Trenn-/Erdungsschalter (falls Trenn-/Erdungsschalter vorhanden),
- 2 x Schlüssel für Zellenschrank
- 2 x Schlüssel für Schlüsselschalter,
- 4 x Filtermatten als Ersatz

3 AUFBAU UND FUNKTIONEN

3.1 Grundlagen des Verfahrens

Die Anwendung eines (Mittelspannungs-)Drehstrommotors mit stufenloser, variabler Drehzahlregelung erfordert den Einsatz eines Frequenzumrichters. Der Frequenzumrichter hat hierbei die Aufgabe, die speisende Netzspannung gemäß der U/f-Steuerkennlinie des Motors bereitzustellen. Auf diese Weise wird für jede gewünschte Motordrehzahl die entsprechende Betriebsspannung und -frequenz bereitgestellt.

Die folgende Abbildung zeigt das allgemeine, einphasige Abzweigsteuerbild einer typischen Anwendung, in dem der Frequenzumrichter zwischen das speisende Mittelspannungsnetz und den Mittelspannungsmotor geschaltet ist.

Abb. 3-1 FU-Anwendung – Abzweigsteuerbild

Mittelspannungsnetz (MS) Frequenzumrichter (FU)

3 Drehstrommotor

HAUPTSTROMKREIS

Die starre Netzspannung (L1, L2, L3) mit konstanter Amplitude und Frequenz wird an die Primärwicklung (1U, 1V, 1W) des Multi-Level-Transformators im FU-Schrank angeschlossen. Der Transformator verfügt über eine Anzahl von Sekundärwicklungen (Multi-Level)

und wandelt die primäre Mittelspannung in mehrere, sekundäre, dreiphasige Niederspannungssysteme um (R, S, T; konstante Amplitude und Frequenz). Jede dieser 3phasigen Spannungssysteme dient als Eingangsspannung für eine sog. Leistungszelle.

Die Leistungszellen Ax, Bx, Cx) repräsentieren die Leistungselektronik des FU und wandeln jeweils die dreiphasigen Niederspannungssysteme in geregelte, getaktete Gleichspannungen um. Die Ausgänge der Leistungszellen werden zu drei Strängen (Phasen A, B, C) in Reihe geschaltet. Der Eingang der drei Phasenstränge (A1, B1, C1) wird zu einem isolierten Neutralpunkt N zusammengeführt; der Ausgang der drei Phasenstränge (s. folgende Abb. A6, B6, C6) bildet das über die Leistungszellen gebildete , dreiphasige, regelbare Spannungssystem A, B, C.

Abb. 3-2 FU-Hauptstromkreis für einen 6 kV Motor

Einspeisung Mittelspannung Multi-Level-Transformator

Leistungszellen Ax, Bx, Cx

6 kV Drehstrommotor

Allgemeine FU-Topologie – Aufgliederungsplan

Der MVH 2.0 besteht grundsätzlich aus:

- einem Multi-Level-Transformator,
- mehreren Leistungszellen und
- einem Steuersystem.

Die folgende Abbildung stellt die prinzipielle Hardware-Topologie des FU am Beispiel eines 11 kV FU dar.

Abb. 3-3 MVH 2.0 – Standardtopologie für z. B. 11 kV

1	Mittelspannungsnetz (MS)
2	Multi-Level-Transformator
3	Leistungszellen
4	Steuersystem:
6	-Steuereinheit
6	-Schnittstelleneinheit (SPS) für Ein- und Ausgänge (I/O)
7	-Bedieneinheit (HMI) mit Touchscreen
8	Strommessung im FU-Ausgang
9	Strommessung im FU-Eingang
10	Spannungsmessung am FU-Eingang
1	Spannungsmessung am FU-Ausgang
12	Transformator-Hilfswicklung 400 V AC
B	11 kV Motor
14	Prozessleitsystem (PLS)
15	Signale der digitalen Ein- und Ausgänge (DI, DO)
16	Signale der analogen Ein- und Ausgänge (Al. AO)

EINGANGS-TRENNTRANSFORMATOR Der Multi-Level-Transformator ist ein integraler Bestandteil des Umrichters und wird als dreiphasiger Trockentransformator mit Zwangsluftkühlung ausgeführt.

Die Transformator-Primärseite wird in Y-Schaltung direkt an die Mittelspannung der Einspeiseseite angeschlossen. Die Transformator-Sekundärwicklungen werden nach der Methode der erweiterten Dreieckschaltung verschaltet, um für jede Leistungszelle eine isolierte dreiphasige Eingangsspannung zu erhalten. Die Anzahl der Sekundärwicklungen und die Anzahl der Leistungszellen werden durch die Höhe der FU-Ausgangsspannung bestimmt.

Zur Minimierung von Oberwellen werden die Sekundärwicklungen der gleichen Phase durch die Methode der erweiterten Dreieckschaltung phasenverschoben. Die Phasendifferenz zwischen den Wicklungen wird nach der folgenden Formel berechnet:

Phasenverschiebungswinkel = (60 °) / n

mit: n = Anzahl der Zellen in jeder Phase

BILDUNG DES FU-SPANNUNGSSYSTEMS A, B, C Das dreiphasige Spannungssystem am FU-Ausgang A, B, C wird durch mehrere Niederspannungs-Leistungszellen mit jeweils einem 3-phasigem Eingang (R, S, T) und einem 1-phasigen Ausgang (L1, L2) für jede Phase gebildet. Gespeist werden die Leistungszellen von den Transformator-Sekundärwicklungen. Die Ausgangsklemmen L1 der jeweils ersten Leistungszelle pro Phase werden zu dem virtuellen Neutralpunkt N (Sternpunkt) zusammengefasst. Die Ausgangsklemmen L2 werden jeweils mit den Ausgangsklemmen L1 der folgenden Leistungszellen verschaltet.

Abb. 3-4 Hauptstromkreis – Beispiel: Spannungsbildung am 3,3 kV FU-Ausgang

Am Ausgang L1 und L2 von jeder Leistungszelle liegt eine getaktete Gleichspannung an. Die Reihenschaltung der Leistungszellenausgänge pro Phase führt zu einer Überlagerung der Leistungszellenausgangsspannungen, um für jede Phase die Phasenspannung zu bilden.

Auf diese Weise entsteht an den FU-Ausgangsklemmen A, B, C ein nahezu sinusförmiges dreiphasiges Drehstromsystem mit dem isolierten Sternpunkt N.

Abb. 3-5 3-phasiges Drehstromsystem am FU-Ausgang A, B, C

Dabei bilden sich die folgenden Phasenspannungen \underline{U}_{NL} :

- Phase A: $\underline{U}_{NA} = \underline{U}_{A} = \underline{U}_{A1} + \underline{U}_{A2} + \underline{U}_{A3}$
- Phase B: $\underline{U}_{NB} = \underline{U}_{B} = \underline{U}_{B1} + \underline{U}_{B2} + \underline{U}_{B3}$
- Phase C: $\underline{U}_{NC} = \underline{U}_{C1} + \underline{U}_{C2} + \underline{U}_{C3}$

sowie die entsprechenden Außenleiterspannungen ULL:

- Phasen A und B: <u>ULL</u> = <u>UAB</u>
- Phasen B und C: <u>U</u>_{LL} = <u>U</u>_{BC}
- Phasen C und A: <u>ULL = Uca</u>

FU- Nenn- spannung [KV]	Anzahl der Leistungs- zellen pro Phase	Eingangs- spannung pro Leistungs- zelle [V]	Phasen- spannung U⊾ [V]	Außenleiter- spannung U∟ [kV]	Anzahl der Spannungs- ausgangs- stufen
2,3	3	450	1330	2,3	7
3,3	3	640	1900	3,3	7
4,16	4	600	2400	4,16	9
6	5	690	3460	6	11
6	6	640	3460	6	13
6,6	6	640	3810	6,6	13
10	9	640	5770	10	19
11	9	690	6350	11	19
13,8	12	690	7967	13,8	25

Die folgende Tabelle zeigt den Zusammenhang zwischen der geforderten FU-Ausgangsnennspannung und der Anzahl und Nennspannung der Leistungszellen.

Tab. 3-1Konfiguration der Leistungszellen

Der dreiphasige FU-Ausgang wird in Sternschaltung angeschlossen, um die erforderliche Nennspannung für den Antrieb des Motors zu erhalten.

- Die Gesamtanzahl der 4160 V Leistungszellen beträgt 12.
- Die Gesamtanzahl der 6 kV Leistungszellen beträgt 15 oder 18 (siehe Spannungsstapeldiagramm 6 kV FU).
- Die Gesamtanzahl der 11 kV Leistungszellen beträgt 24 oder 27 (siehe Spannungsstapeldiagramm 11 kV FU).

BEISPIEL: 6KV-FU

Es werden pro Außenleiter 5 Leistungszellen mit einer Nennspannung von 690 V in Reihe geschaltet, um jeweils eine Phasenspannung von 3450 V zwischen Außenleiter und Neutralleiter und eine Außenleiterspannung von 6 kV zu erhalten.

Bei einem 6 kV-FU mit jeweils fünf in Reihe geschalteten Leistungszellen ergeben sich 11 *Spannungsausgangsstufen* (-5 bis 0 und 0 bis +5).

Die folgende Abbildung zeigt – für eine Phase – die Kurvenform der von jeder Leistungszelle ausgegebenen Spannung sowie die Kurvenform der daraus resultierenden Gesamtphasenspannung (Reihenschaltung der Leistungszellen) am Ausgang des FU.

Abb. 3-8 Bildung einer Phasenspannung mit fünf Leistungszellen eines 6 kV-FU

Die sinusförmige Ausgangsspannung wird durch die inkrementale Addition der Zellenspannungen gebildet. Dies hat zur Folge, dass der MVH 2.0 eine nahezu sinusförmige Ausgangsspannung an den Motorklemmen zur Verfügung stellt und daher keine Sondermotoren (erhöhte Wicklungsisolation, oder isolierte Lager) benötigt werden. Dieser Antrieb eignet sich auch für Retrofit unter Beibehaltung der existierenden Motoren.

Abb. 3-9 Kurvenform der FU-Ausgangsspannung

Abb. 3-10 Kurvenform des FU-Ausgangsstromes

3.2 Mechanischer AUFBAU

In den folgenden Abschnitten sind jeweils die wichtigsten Baugruppen der verschiedenen Schranktypen der MVH 2.0 Serie über ihre Vorder-, Seiten- und Rückansichten dargestellt und benannt.

a) Vorderansicht b) Seitenansicht: FU-Eingangsfeld

- 1 Leistungszellen für die Phasen A, B und C
 - Lüfter zur Kühlung des FU-Schranks
 - Schrankgerüst des kombinierten Leistungszellen-/Transformatorschranks
- 234567399123 FU-Eingangsfeld
 - Niederspannungsnische (geschottet) für FU-Steuerung
 - Betätigungszugang für MS-Trenn-/Erdungsschalter
 - FU-Steuereinheit
 - I/O-Schnittstelleneinheit
 - Sockel für Schrankaufbau
 - Mechanische Antriebswelle für Trenn-/Erdungsschalter
 - Trenn-/Erdungsschalter
 - MS-Sicherungen
 - Kabelschacht für Kundenzuleitung (Mittelspannung)
- Ă Hauptschütz
- ß Anschluss Motorabgang

Abb. 3-12 ACC-AuCom Compact Cabinet a) Rückansicht b) Seitenansicht: kombinierter Leistungszellen-/Transformatorschrank

- П Kabelanschluss MS-Zuleitung (Kundenseite)
- 2 Trenn-/Erdungsschalter ğ
 - Leistungszellen für die Phasen A, B und C
- Multi-Level-Transformator ğ
 - Kabelschacht für Kundenzuleitung (Mittelspannung)
- 6 Hauptschütz

Ă

7

Installationsfach für Komponenten zur Spannungsmessung, Leistungszellenerkennung und Widerstände des Vorladesystems

3.2.2 AFA – AUCOM FRONT ACCESS: FRONTSEITIGER SERVICEBEREICH

Abb. 3-13 AFA-AuCom Front Access - Vorderansicht

- 1 Lüfter zur Kühlung des FU-Schranks
- 2 Schrankgerüst des Transformatorschranks
- Multi-Level-Transformator
 - Schrankgerüst des Leistungszellenschranks
 - Leistungszellen an der Vorderseite für die Phasen A, B und C
 - FU-Eingangsfeld
 - Niederspannungsnische (geschottet) für FU-Steuerung
 - Betätigungszugang für MS-Trenn-/Erdungsschalter
 - Optionale Kabeleinführung MS-Zuleitung von oben (Kundenseite)
 - Optionale Kabeleinführung Motorabgang von oben(Kundenseite)
 - FU-Steuereinheit
 - I/O-Schnittstelleneinheit
- B Sockel für Schrankaufbau

Abb. 3-14 AFA-AuCom Front Access - Seitenansicht a) Seitenansicht links: Transformatorfeld b) Seitenansicht rechts: FU-Eingangsfeld

- 1 Kabeldurchführung: MS-Trafozuleitung
 - Multi-Level-Transformator
- 23456789 Kabeldurchführungen
 - Mechanische Antriebswelle für Trenn-/Erdungsschalter
 - Kabeleinführung MS-Zuleitung (Kundenseite)
 - Trenn-/Erdungsschalter
 - MS-Sicherungen
 - Hauptschütz
 - Optionaler Kabelanschluss Motorabgang (Kundenseite)
 - Optionale Kabeleinführung Motorabgang (Kundenseite)

Ď

Abb. 3-15 AFA-AuCom Front Access – Rückansicht

- 0 Optionale Kabeleinführung MS-Zuleitung oben (Kundenseite) **2 3 4**
 - Kabelanschluss MS-Zuleitung (Kundenseite)
 - Trenn-/Erdungsschalter

Installationsfach für Komponenten zur Spannungsmessung, Leistungszellenerkennung und Widerstände des Vorladesystems

- Kabelschacht für Kundenzuleitung (Mittelspannung)
- 5 6 7 Hauptschütz
 - Optionale Kabeleinführung Motorabgang oben (Kundenseite)

3.2.3 ADA – AUCOM DOUBLE ACCESS: DOPPELSEITIGER SERVICEBEREICH

Abb. 3-16 ADA-AuCom Double Access - Vorderansicht

- 1 Lüfter zur Kühlung des FU-Schranks
- Ž Schrankgerüst des Transformatorschranks
- 3456789 Multi-Level-Transformator
 - Schrankgerüst des Leistungszellenschranks
 - Leistungszellen an der Vorderseite für die Phasen A, B und C
 - FU-Eingangsfeld
 - Niederspannungsnische (geschottet) für FU-Steuerung
 - Betätigungszugang für MS-Trenn-/Erdungsschalter
 - FU-Steuereinheit
- Ď I/O-Schnittstelleneinheit
- 1 Sockel für Schrankaufbau

1	
	—

HINWEIS

- Der ADA-Schranktyp ist ebenfalls mit einer:
- optionalen Kabeleinführung MS-Zuleitung von oben (Kunden- \triangleright seite) und einer
- ≻ optionalen Kabeleinführung Motorabgang von oben (Kundenseite)
- erhältlich.

- Kabelschacht für Kundenzuleitung (Mittelspannung)
- Hauptschütz

9

Anschluss Motorabgang

Abb. 3-18 ADA-AuCom Double Access – Rückansicht

- 1 Kabelanschluss MS-Zuleitung (Kundenseite)
- **2** 3 Trenn-/Erdungsschalter
 - Installationsfach für Komponenten zur Spannungsmessung, Leistungszellenerkennung und Widerstände des Vorladesystems
- 4 Leistungszellen an der Rückseite für die Phasen A, B und C
 - Kabelschacht für Kundenzuleitung (Mittelspannung)
- Ğ Hauptschütz

3.3 SICHERHEITS- UND ÜBERWACHUNGSEINRICHTUNGEN

3.3.1 NOT-AUS / NOT-HALT

AUSSCHALTEN IM NOTFALL

Für Situationen in denen die Ursache für eine Personengefährdung oder die Beschädigung von Anlagenteilen in der Versorgung des FU mit elektrischer Energie liegt, sieht der MVH 2.0 ein entsprechendes *NOT-AUS-Konzept* als elementare Sicherheitseinrichtung vor.

Das NOT-AUS-Konzept umfasst die Freischaltung des FU von der Mittelspannung über das Hauptschütz des FU und stellt parallel dazu die Ausschaltsignale für den Anschluss der vorgelagerten MS-Hauptschaltelementes auf der Kundenseite zur Verfügung. Die Eingangs- und Ausgangssignale des NOT-AUS-Schaltkreises sind gemäß IEC-Standard redundant (2-kanalig) ausgeführt.

Abb. 3-19 MVH 2.0 – Prinzipschaltbild zum NOT-AUS-Konzept

Motorschutzgerät

RÜCKSETZEN DES SICHERHEITSRELAIS Nach Beseitigung der Ursachen für den NOT-AUS kann die FU-Betriebsbereitschaft erst nach Rücksetzen des Sicherheitsrelais wieder hergestellt werden. Das Rücksetzen erfolgt ausschließlich über die Betätigung des *RESET-Tür-Tasters* am Steuerfeld des FU.

für die Ausschaltung des MS-Hautschaltelementes zur Verfügung.

3.3.2 SCHRANKTÜRVERRIEGLUNGEN

GEFAHR

a)

A

Gefahr durch elektrischen Schlag!

Lebensgefahr oder Verletzungsgefahr durch elektrischen Schlag bei Berührung von unter Spannung stehenden Teilen im Leistungszellen-/Transformatorschrank. An den Klemmen der Leistungszellen kann nach dem Ausschalten des FU noch eine gefährliche Restspannung anliegen (Kondensatoren).

- Niemals die Türen des Leistungszellenschranks während des FU-Betriebes öffnen!
- Vor dem Öffnen der Leistungszellenschranktüren den FU-Betrieb ausschalten und den FU vom MS-Netz trennen und die *fünf* Sicherheitsregeln anwenden.
- Warten Sie nach der Trennung vom MS-Netz noch mindestens 10 Minuten nachdem die Statusanzeige der Leistungszelle erloschen ist, bevor Sie mit Arbeiten im Leistungszellenschrank beginnen.

Zur Vermeidung einer Personengefährdung durch elektrischen Schlag bei unzulässigem Öffnen von Leistungszellenschranktüren während des FU-Betriebs, verfügt der FU über eine elektrische Sicherheitseinrichtung die zum Abschalten des FU führt.

Jede Schranktür des Leistungszellenschranks (Vorderseite und ggf. Rückseite) verfügt über einen Schlüsselschalterkontakt (Schließer). Sämtliche Schlüsselschalterkontakte der Türgriffe sind in Reihe geschaltet und der Signalausgang führt auf den digitalen Eingang *Türalarm Zellenschrank* (Anschlussklemme: -XS3:10).

Für den FU-Betrieb müssen alle Türen geschlossen und verriegelt (abgeschlossen) sein; d.h. die Schlüsselschalterkontakte sind geschlossen und es liegt ein +24 V DC Potential an der DI-Anschlussklemme (Schaltlogik des DI: Ruhestromprinzip).

Abb. 3-20 Schranktürverriegelung

a) Schlüsselschalterkontakt (Türinnenseite)

b) Türschloss verriegelt (senkrechte Schlüsselposition, Kontakt geschlossen) c) Türschloss entriegelt (waagerechte Schlüsselposition, Kontakt geöffnet)

LED-Anzeige: Freigabe Türverriegelung

Freigabe Türverriegelung

Eine Schranktür darf nur bei *aktivierter Freigabe der Türverriegelung* entriegelt werden. Das Freigabesignal wird von dem FU-Steuersystem nur dann aktiviert, wenn die Mittelspannung ausgeschaltet ist; d.h. das vorgelagerte MS-Hauptschaltelement muss ausgeschaltet sein. Der Trenn-/Erdungsschalter muss sich in der Erdungsposition befinden.

LED-Anzeige	Farbo	ode	Beschreibung
Freigabe	(AUS)	\bigcirc	LED ausgeschaltet: Freigabesignal nicht aktiviert
Türverriegelung	grün		LED eingeschaltet: Freigabesignal aktiviert

TÜRVERRIEGELUNG VERLETZTSobald mindestens eine Tür ohne die Freigabe der Türverriegelung entriegelt wird
(Notentriegelung: Türschloss wird mit Schlüssel aufgeschlossen), wird der DI Türalarm
Zellenschrank aktiviert.

- Für die Parametereinstellung *Offene Schranktür: Störungsauswahl = Alarm* wird lediglich die Alarmmeldung *Alarm: Türalarm Zellenschrank* generiert und im Display der Bedieneinheit (HMI) angezeigt. Der FU-Betrieb wird *nicht* abgeschaltet.
- Für die Parametereinstellung *Offene Schranktür: Störungsauswahl = Fehler* wird die Fehlermeldung *Fehler: Türalarm Zellenschrank* generiert und im Display der Bedieneinheit (HMI) angezeigt. Der FU-Betrieb wird abgeschaltet.

WARNUNG

Gefahr durch elektrischen Schlag!

Für die Parametereinstellung *Offene Schranktür: Störungsauswahl = Alarm* besteht Lebensgefahr oder Verletzungsgefahr durch elektrischen Schlag bei Berührung von unter Spannung stehenden Teilen im Leistungszellenschrank.

- Der FU wird grundsätzlich mit der Werkseinstellung: Offene Schranktür: Störungsauswahl = Fehler ausgeliefert.
- Die Verwendung des FU mit der Parametereinstellung: Offene Schranktür: Störungsauswahl = Alarm ist nicht zu empfehlen, liegt jedoch im Ermessen und in der Verantwortung des Anwenders!

3.3.3 VERRIEGELUNG DES KURBELZUGANGS FÜR TRENN-/ERDUNGSSCHALTER

Der Trenn-/Erdungsschalter (engl.: *Disconnect-Earthing-Switch*) darf nur geschaltet werden, wenn das vorgelagerte *MS-Hauptschaltelement ausgeschaltet* ist.

Schaltvorgänge des Trenn-/Erdungsschalters werden manuell mit einer Schaltkurbel durchgeführt. Die Schaltkurbel wird an der Vorderseite des Eingangsfeldes in einen entsprechenden Kurbelzugang eingeführt. Der Kurbelzugang wird elektro-mechanisch über einen separaten Schlüsselschalter und ein Verriegelungsblech mit Kreuz-Öffnung verriegelt.

a) b)

Abb. 3-21 Verriegelung des Zugangs für die Schaltkurbel a) Schlüsselschalter: Verriegelungsposition b) Kurbelzugang verriegelt

Um die Schaltkurbel in den Kurbelzugang einführen zu können, müssen zunächst alle (anlagenspezifischen) Vorbedingungen erfüllt sein. Erst dann kann der Schlüsselschalter nach rechts gedreht werden. Dadurch wird eine elektro-mechanische Verklinkung gelöst, so dass das Verriegelungsblech nach oben geschoben werden kann. Jetzt kann die Schaltkurbel in den Kurbelzugang eingeführt werden.

Abb. 3-22 Verriegelung des Zugangs für die Schaltkurbel a) Schlüsselschalter: Entriegelungsposition b) Kurbelzugang entriegelt

3.3.4 **ERDUNGSKONZEPT DES MVH 2.0**

SCHUTZ- UND FUNKTIONSERDUNG Das Erdungskonzept des MVH 2.0 umfasst sowohl die Schutzerdung (PE) als auch die Funktionserdung (FE) des Frequenzumrichters.

Die Schutzerdung (PE) verhindert die Personengefährdung durch einen elektrischen Schlag aufgrund von gefährlichen Berührungsspannungen von leitfähigen Anlagenteilen des FU, welche keine Spannung führen dürfen. Diese Anlagenteile sind mit der zentralen Erdungsschiene des FU verbunden, um einen Potenzialausgleich zum gemeinsamen Erdpotenzial herzustellen.

Die Funktionserdung (FE) dient der Einhaltung der Anforderungen in Bezug auf die Elektromagnetische Verträglichkeit (EMV) und gewährleistet einen störungsfreien Betrieb des FU.

Abb. 3-23 MVH 2.0 – Prinzipschaltbild zum Erdungskonzept

- 1 Mittelspannungsnetz
- 2 Netzseitige Einspeiseleitung
- 8 Anschluss Erdungsschiene: Schirmung der Einspeiseleitung
 - Anschuss Erdungsschiene: Kundenseitige, gemeinsamer Erdungspunkt
- FU-Schrank
- 456 Umlaufende, nicht geschlossene FU-Erdungsschiene
- Ŏ Grundplatte zur Funktionserdung von Hilfskomponenten
- 8 Anschluss Erdungsschiene: Separate Erdungsleitung vom Motorgehäuse
- Ŏ Anschluss Erdungsschiene: Schirmung der Motorleitung
- Ŏ Motorabgangsleitung
- ð Anschluss Motorgehäuse: Schirmung der Motorleitung
- 12 Anschluss Motorgehäuse: Separate Erdungsleitung zur Erdungsschiene
- B Separate Erdungsleitung
- 14 Zentraler Erdungspunkt

GEMEINSAMER Der FU-Schrank ist an einem zentralen Erdungspunkt 🛽 über die Erdungsschiene 🌀 am Anschlusspunkt 4 zu erden. ERDUNGSPUNKT DES FU

Die Schirmung der MS-Einspeiseleitung 2 ist über die Erdungsschiene 6 am An-SCHIRMUNG DER schlusspunkt 3 zu erden. EINSPEISELEITUNG

Erdung von Hilfskomponenten	Die relevanten, elektrischen Hilfskomponenten sind mit der Grundplatte de Niederspan- nungsnische 🕜 im Steuer-/Eingangsfeld zu verbinden. Die Grundplatte ist über eine fein- adrige Erdungsleitung mit der Erdungsschiene 🕜 verbunden.
Schirmung der Motorleitung	Die Schirmung der Motorleitung 🕕 ist am FU über die Erdungsschiene 🕝 am Anschluss- punkt 🥑 zu erden und auf der Motorseite an das Motorgehäuse 🕕 anzuschließen.
Separate Erdungsleitung zwischen Motor und FU	Das Motorgehäuse (2) ist über eine separate Erdungsleitung (3) mit der Erdungsschiene des FU (8) zu verbinden.

3.4 MULTI-LEVEL-TRANSFORMATOR

Der Frequenzumrichter bezieht seine Energie aus dem Mittelspannungsnetz über den Multi-Level-Transformator. Der Transformator dient einerseits zur galvanischen Trennung des vom FU erzeugten Spannungssystems vom Einspeisenetz. Andererseits stellt der Transformator über seine Sekundärwicklungen (erweiterte Dreieckswicklungen) die Energie für jede Leistungszelle des FU bereit (Niederspannung). Die Anzahl der erforderlichen Sekundärwicklungen entspricht dabei der Anzahl der Leistungszellen im Frequenzumrichter.

Abb. 3-24 Beispiel: 4,16 kV Multi-Level-Transformator

Sekundärwicklungen

Über eine weitere, 3-phasige 400 VAC Hilfswicklung auf der Sekundärseite des Transformators wird die Spannung am FU-Eingang gemessen. Für Leistungszellen-Nennströme > 250 A können die Leistungszellen über die 400 VAC Hilfswicklung vorgeladen werden.

Abb. 3-25 4,16 kV Multi-Level-Transformator – Typenschild

Primärwicklung (*Primary*)
 Sekundärwicklungen (*Secu*)

Sekundärwicklungen (*Secondary*)

3 Hilfswicklung (*Auxiliary*)

Die netzseitige Mittelspannung wird über das vorgelagerte Hauptschaltlement an die Klemmen 1U, 1V, 1W des Multi-Level-Transformators angeschlossen.

Abb. 3-26 4,16 kV Multi-Level-Transformator – Netzseitiger Anschluss

Anschlüsse der Trafo-Primärwicklung (Primary)

Die Strommessung am FU-Eingang erfolgt über zwei Stromwandler in der Primärwicklung des Multi-Level-Transformators. Die Primärwicklung ist in Stern verschaltet.

Abb. 3-27 4,16 kV Multi-Level-Transformator – Strommessung am FU-Eingang

2

3

Transformator-Sternpunkt

Anschlussleitungen der Sekundärwicklungen (R, S, T) zu den Leistungszellen Stromwandler im Trafo-Primärkreis

HINWEIS

Der Multi-Level-Transformator ist ein elementarer Bestandteil des geprüften und freigegebenen Umrichters. Für kundenspezifische Änderungen der geprüften und freigegebenen Standardausführung des MVH 2.0 kann AuCom die Verantwortung für das FU-Gesamtsystem *nicht* übernehmen. Dies würde eine erneute Typprüfung erfordern.

3.5 FU-STEUERSYSTEM

Das FU-Steuerungssystem des MVH 2.0 besteht aus:

- einer mikroprozessorgesteuerten FU-Steuereinheit (Steuerung und Regelung), bestehend aus modularen Baugruppen,
- einer Bedieneinheit (HMI) mit Touchscreen und
- einer I/O-Schnittstelleneinheit, bestehend aus einer speicherprogrammierbaren Steuerung (SPS) als integraler Bestandteil des FU-Steuersystems, einem *oberen* und *unteren* Klemmbrett für den Anschluss von digitalen und analogen Ein- und Ausgängen.

Abb. 3-28 FU-Steuersystem

FU-Steuereinheit

3 I/O-Schnittstelleneinheit

3.5.1 FU-STEUEREINHEIT – BAUGRUPPEN

AUFBAU Die Steuereinheit besteht aus den folgenden Baugruppen:

- Hauptprozessor-Baugruppe,
- den Lichtwellenleiter (LWL)-Baugruppen,
- der Spannungsversorgungs-Baugruppe und
- der Signal-Baugruppe

AUFBAU UND FUNKTIONEN

Abb. 3-29 Baugruppen der FU-Steuereinheit – Frontansicht

- 1 LWL-Baugruppe AP1 (Leistungszellen der Phase A)
 - LWL-Baugruppe AP2 (Leistungszellen der Phase B)
- 3 LWL-Baugruppe AP3 (Leistungszellen der Phase C)
- 4 Hauptprozessor-Baugruppe AP4
- 5 Spannungsversorgung AP5
- 6 Signal-Baugruppe AP6

LWL-BAUGRUPPEN AP1 BIS AP3

FUNKTION

2

Die Steuereinheit ist mit insgesamt drei Lichtwellenleiter-Baugruppen: AP1, AP2 und AP3 ausgestattet. Diese LWL-Baugruppen bilden die Kommunikationsbrücke zwischen der Steuereinheit und den Leistungszellen des FU:

- LWL-Baugruppe AP1: Senden/Empfangen optischer Signale an/von den Leistungszellen der Phase A.
- LWL-Baugruppe AP2: Senden/Empfangen optischer Signale an/von den Leistungszellen der Phase B.
- LWL-Baugruppe AP3: Senden/Empfangen optischer Signale an/von den Leistungszellen der Phase C.

Jede LWL-Baugruppe kommuniziert fortlaufend mit allen Leistungszellen der ihr entsprechenden Phase des FU-Spannungssystems:

- Senden (engl.: transmit, T): Pu
 - transmit, T): Pulsweiten-modulierte (PWM) Steuersignale für die IGBTs der Leistungszellen
 - Empfangen (engl.: receive, R): Statussignale der Leistungszellen bzw. ein Fehlercodesignal für den Fall einer defekten Leistungszelle.

SCHNITTSTELLEN UND

Abb. 3-30 Steuereinheit – Baugruppen AP1, AP2, AP3

L۱	WL-Anschlüss	ie		
AP1	AP2	AP3	Beschreibung	
(Phase A)	(Phase B)	(Phase C)		
A1 XT2 XR2	B1 XT2 XR2	C1 XT2 XR2	Transmit: Receive:	Optische Signale werden an die jeweils 1. Leistungszelle A1, B1, C1 gesendet. Optische Signale von der jeweils 1.
				Leistungszelle werden empfangen.
A2 XT2	B2 XT2	C2 XT2	Transmit	Optische Signale werden an die jeweils 2. Leistungszelle A2, B2, C2 gesendet.
XR2	XR2	XR2	Receive	Optische Signale von der jeweils 2. Leistungszelle werden empfangen.
A3 XT2	B3 XT2	C3 XT2	Transmit	Optische Signale werden an die jeweils 3. Leistungszelle A3, B3, C3 gesendet.
- XRZ	- XRZ	- XR2	Receive:	Leistungszelle werden empfangen.
A4 XT2	B4 XT2	C4 XT2	Transmit	Optische Signale werden an die jeweils 4. Leistungszelle A4, B4, C4 gesendet.
XR2	XR2	XR2	Receive	Optische Signale von der jeweils 4. Leistungszelle werden empfangen.
A5 XT2	B5 XT2	C5 XT2	Transmit:	Optische Signale werden an die jeweils 5. Leistungszelle A5, B5, C5 gesendet.
XR2	XR2	XR2	Receive	Optische Signale von der jeweils 5. Leistungszelle werden empfangen.
A6 XT2	B6 XT2	C6 XT2	Transmit:	Optische Signale werden an die jeweils 6. Leistungszelle A6, B6, C6 gesendet.
XR2	XR2	XR2	Receive:	Optische Signale von der jeweils 6. Leistungszelle werden empfangen.
A7 XT2	B7 XT2	C7 XT2	Transmit	Optische Signale werden an die jeweils 7. Leistungszelle A7, B7, C7 gesendet.
XR2	XR2	XR2	Receive:	Uptische Signale von der jeweils 7. Leistungszelle werden empfangen.
A8 XT2	B8 XT2	C8 XT2	Transmit	Optische Signale werden an die jeweils 8. Leistungszelle A8, B8, C8 gesendet.
XR2	XR2	XR2	Receive:	Optische Signale von der jeweils 8. Leistungszelle werden empfangen.
A9 XT2	B9 XT2	C9 XT2	Transmit	Optische Signale werden an die jeweils 9. Leistungszelle A9, B9, C9 gesendet.
XR2	XR2	XR2	Receive:	Optische Signale von der jeweils 9. Leistungszelle werden empfangen.
Anzeigeelem AP1	ente AP2	AP3	Beschreib	ung
LED-Blöcke: LED: 1 LED: 2 LED: 3 LED: 4			Betriebsar RESET der Spannung: Bypass	nzeige Baugruppen AP1, AP2, AP3 sversorgung der Baugruppe

Tab. 3-2 Anschlüsse – Baugruppen AP1, AP2, AP3

HINWEIS ו

Die Baugruppenausführung ist abhängig von der Anzahl der benötigten Leistungszellen im FU.

HAUPTPROZESSOR-BAUGRUPPE AP4

AUFBAU UND FUNKTION Die Hauptprozessor-Baugruppe besteht im Wesentlichen aus den folgenden zwei Schaltkreisen:

DSP-Subsystem

Der digitale Signalprozessor (DSP) verarbeitet die:

- o Algorithmen für die Motorsteuerung,
- o Fehlerdiagnose für die Leistungszellen,
- o verschiedenen Echtzeit-Schutzfunktionen und
- o Kommunikation mit den Schnittstellen-Einheiten.

• FPGA-Subsystem

- Das Field Programmable Gate Array (FPGA) koordiniert die:
- o Echtzeitkommunikation mit dem DSP,
- o Kommunikation mit den Leistungszellen,
- o trägerphasenverschobene PWM-Ausgabe und
- o andere logische Funktionen.

Schnittstellen und Anzeigeelmente

Schnittstellen Beschreibung CANBUS: Kommunikation mit PC/Notebook: IBS-Schnittstelle, SW-Programm: HC Tools CANH CAN BUS-"High"-Pegel CANL CAN Bus-"Low"-Pegel EGND Erdung und Schirmung 9-polige SUB-D Buchse: Kommunikation zur I/O-Schnittstelleneinheit (SPS): PIN 3 RS485 Kommunikationsschnittstelle, RS485A: RxD/TxD "High"-Pegel PIN 8 RS485 Kommunikationsschnittstelle, RS485B: RxD/TxD "Low"-Pegel Lichtwellenleiter (LWL): Optische Kommunikationsschnittstelle für Master/Slave-Betrieb (optional: separate Bestelloption; nicht über Produktcode!) Quellterminal: TX-Anschluss der AP4-Baugruppe der Master- oder RX Slave-Steuereinheit ТΧ Zielterminal: RX-Anschluss der AP4-Baugruppe der Master- oder Slave-Steuereinheit Anzeigeelemente Beschreibung LED-Block: L FD: 1 DSP in Betrieb LED: 2 DSP Backup LED: 3 FPGY MS bereit LED: 4 FPGA RESET LED: 5 DSP Backup LED: 6 DSP Kommunikation LED: 7 FPGA Steuereinheit bereit LED: 8 FPGA in Betrieb

Tab. 3-3Baugruppe AP4 – Schnittstellen und Anzeigen

Abb. 3-31 Steuereinheit – Baugruppe AP4

SPANNUNGSVERSORGUNG – BAUGRUPPE AP5

Aufbau Diese Baugruppe liefert die von der Steuereinheit benötigte Versorgungsspannung und verfügt über eine I/O Schnittstelle sowie eine Schnittstelle für den Motor-Drehzahlgeber.

- Erzeugung von + 5 V, ± 15 V für die Spannungsversorgung der Hauptprozessor-Bau-*FUNKTION* • gruppe AP4, der LWL-Baugruppen AP1, AP2, AP3 und der Signal-Baugruppe AP6.
 - Digitale Signalübertragung im FU-System .

Bei Vektorregelungsmodellen mit geschlossenem Regelkreis wird die vom Drehzahlgeber zurückgesendete Information zur Motordrehzahl erfasst.

ANSCHLÜSSE UND	Anschluss	Beschreibung
Anzeigeelemente	PF	Frduna
	PGND	24 V Spannungsversorgung: neg. Potential
	24VDC	24V Spannungsversorgung: pos. Potential
AP5	VCO	Positives Versorgungspotential für Drehzahlgeber: +5 V oder +24 V oder 200 mA
	AP AN	Drehzahlgebersignal A+ Drehzahlgebersignal A-
PE SND	BP BN	Drehzahlgebersignal B+ Drehzahlgebersignal B-
	ZP ZN	Drehzahlgebersignal Z+ Drehzahlgebersignal Z-
AN BP BN	PGND	Negatives Versorgungspotential für Drehzahlgeber
ZP ZN SND LK+	CLK+ CLK-	Ausgang für pos. Taktgebersignal + Ausgang für neg. Taktgebersignal -
	Anzeigeelement	Beschreibung
	LED-Block:	
	LED: 1. Reihe links	-15 V
►15V	LED: 2. Reihe rechts	+15 V
+24V	LED: 3. Reihe links	+5 V +24 V
	LED. 4. Reine recrits	Decementary
	Anschluss	Beschreibung
	BACKOUT1	Reserveausgang 1, Schließer-Kontakt
	BACKOUT2	Reserveausgang 2, Schließer-Kontakt
	HV-OFF	Ausgang: +24 V DC Signal <i>MS nicht bereit</i> an die I/O-Schnittstellenein- heit (Ziel-Terminal: -XS3:4). Mittelspannung ist nicht bereit, wenn interner Schließer-Kontakt (AP5) geschlossen ist. (⇒ +24 V DC an Klemme <i>HV-OFF</i>)
	DO-COM	Ausgang: Gemeinsames pos. Potential (+24 V DC) für digitale Aus- gänge (DO) an die I/O-Schnittstelleneinheit (Ziel-Terminal: - XS3:2)
uereinheit – ugruppe AP5	PRDY	Ausgang: +24 V DC Signal <i>Steuereinheit bereit</i> an die I/O- Schnittstelleneinheit (Ziel-Terminal: -XS3:4). Steuereinheit ist bereit, wenn interner Schließer-Kontakt (AP5) geschlossen ist (⇒ +24 V DC an Klemme <i>PRDY</i>).
	PENL	Eingang: +24 V DC Signal <i>I/O-Schnittstelleneinheit bereit</i> von der I/O- Schnittstelleneinheit (Quell-Terminal: -XS15:5), I/O-Schnittstelleneinheit ist bereit, wenn externer Schließer-Kontakt (-XS15:5,6) geschlossen ist (⇒ +24 V DC an Klemme <i>PENL</i>).
	BACKIN	Reserveeingang
	DI-COM	Ausgang: Gemeinsames pos. Potential (+24 V DC) für digitale Aus- gänge (DO) an die I/O-Schnittstelleneinheit (Ziel-Terminal: - XS15:6)
	PRST	Eingang: +24 V DC Signal <i>AP1, AP2, AP3 RESET</i> von der I/O- Schnittstelleneinheit (Quell-Terminal: -XS15:6,8), I/O-Schnittstelleneinheit ist bereit, wenn externe Schließer- Kontakte (-XS15:5,6 und -XS15:7,8) geschlossen sind (⇒ +24 V DC an Klemme <i>PRST</i>).

Abb. 3-32 Steuereinheit -Baugruppe AP5

SIGNAL-BAUGRUPPE AP6

Beschreibung

Phase A: Signal der Eingangsspannung

Phase B: Signal der Eingangsspannung

Phase C: Signal der Eingangsspannung

Phase U: Signal der Ausgangsspannung

Phase V: Signal der Ausgangsspannung

Phase W: Signal der Ausgangsspannung

Phase U: Signal des Ausgangsstromes

Phase V: Signal des Ausgangsstromes

Phase W: Signal des Ausgangsstromes

Gemeinsames Potential der Eingangsstromsignale

Hall-Sensor: pos. Potential +

Hall-Sensor: neg. Potential -

Hall-Sensor: pos. Potential +

Hall-Sensor: neg. Potential -

Hall-Sensor: pos. Potential +

Hall-Sensor: neg. Potential -

Gemeinsames Potential der Eingangsspannungssignale

Gemeinsame Klemme für die Ausgangsspannungssignale

Pos. Buspotential für die Spannungsabtastung der Leistungszellen: +

Neg. Buspotential für die Spannungsabtastung der Leistungszellen: -

Anschluss

VA VB

VC

AGND

UNITA

UNITG

AGND

VU

VV

VW

IU -15 V

IV 15 ۷-

+15 V

+15 V

+15 V

-15 V

ICOM

IW

IA

IC

ΡE

ΡE

Tab. 3-5

AUFBAU UND FUNKTION

Dieser Baugruppe werden die Strom- und Spannungsmesswerte des FU-Eingangs sowie des FU-Ausgangs zugeführt. Die analogen Messwerte werden von der Signalbaugruppe AP6 in digitale Signale umgewandelt und an die Hauptprozessor-Baugruppe AP4 gesendet.

ANSCHLÜSSE

Abb. 3-33 Steuereinheit – Baugruppe AP6

	J
_	<u>ر</u>
_	_
=	_
_	_

HINWEIS

Erdung

Erdung

Anschlüsse – Baugruppe AP6

Die Baugruppenausführung ist abhängig von den Leistungskenndaten des FU.

Phase A: Signal des Eingangsstromes (Sternpunktseite der Leistungszellen)

Phase C: Signal des Eingangsstromes (Sternpunktseite der Leistungszellen)

3.5.2 I/O-Schnittstelleneinheit (SPS) für Ein- und Ausgänge

ÜBERSICHT

AUFBAU Die I/O-Schnittstelleneinheit besteht aus einer *speicherprogrammierbaren Steuerung* (SPS), einem *oberen Klemmbrett* mit Klemmleistenblöcken für Eingangssignale und einem *unteren Klemmbrett* mit Klemmleistenblöcken für Ausgangssignale. Beide Klemmbretter sind über Klemmleistenblöcke mit der SPS verbunden.

Abb. 3-34 I/O-Schnittstelleneinheit

Klemmbrett mit den oberen Klemmleistenblöcken Speicherprogrammierbare Steuerung (SPS) Klemmbrett mit den unteren Klemmleistenblöcken

FUNKTION

Die I/O-Schnittstelleneinheit wird für die logische Verarbeitung von internen Signalen, externen I/O-Kundensignalen und Rückmelde- sowie Statussignalen verwendet.

Die Logiksteuerung der I/O-Schnittstelleneinheit basiert auf einer speicherprogrammierbaren Steuerung (SPS) Siemens S7-1200. Diese SPS ist mit einem Siemens-Hochgeschwindigkeits-Prozessorchip ausgestattet. Die maximale SPS-Zykluszeit beträgt 0,15 µs. Für die schnelle Berechnung und Verarbeitung von Signalen für die FU-Steuerungsanforderungen sind umfangreiche Schnittstellen vorhanden, wie z. B.:

- 24 digitale Eingänge (DI),
- 16 digitale Ausgänge (DO),
- 4 analoge Eingänge (AI) sowie
- 4 analoge Ausgänge (AO).

KOMMUNIKATION Die Standardausstattung des S7-1200 CPU-Moduls enthält eine RJ45 Ethernet-Schnittstelle. Diese verarbeitet die interne Kommunikation zur Bedieneinheit über das Siemens S7-Protokoll.

Für eine externe Kommunikation ist eine RS485-Schnittstelle mit Modbus RTU-Protokoll vorhanden, über die mit Geräten von Drittanbietern kommuniziert werden kann. Andere Protokolltypen wie Modbus TCP/IP, Profinet oder Profibus etc. können optional bereit gestellt werden.

Schnittstellen	Beschreibung		
Ethernet (LAN):	Interne Kommunikation zur Bedieneinheit (HMI)		
RJ45	S7-Protokoll		
9-polige SUB-D Buchse:	Kommunikation zur Steuereinheit (Baugruppe AP4):		
PIN 3 PIN 8	RS485 Kommunikationsschnittstelle, RS485A: RxD/TxD "High"-Pegel RS485 Kommunikationsschnittstelle, RS485B: RxD/TxD "Low"-Pegel		

Tab. 3-6Speicherprogrammierbare Steuerung (SPS) – Schnittstellen

Mit der Signal-Baugruppe CM01 kann eine freie Kommunikation über RS485 realisiert werden.

FIRMWARE-UPDATE UND Die SPS ist mit einem Micro-SD-Kartensteckplatz ausgestattet. Ein Programm-Update sowie eine Aktualisierung der SPS-Firmware können mit einer universellen Micro-SD-Karte durchgeführt werden. Die Notwendigkeit der Anwesenheit eines Servicetechnikers bzw. die Rücksendung der SPS ins Werk entfällt.

BEDINGUNGEN FÜRFür das folgende Anschlussdiagramm gelten hinsichtlich der dargestellten Signalkon-ANSCHLUSSDIAGRAMMtakte die folgenden Bedingungen:

- Die Steuerspannung für die Steuereinheit ist eingeschaltet.
- Eingestellter Arbeitsmodus: *FU-Modus = Test*
- Die Baugruppen AP1, AP2, AP3, AP4, AP5 und AP6 der Steuereinheit funktionieren störungsfrei.
- FU-Freigabe extern liegt vor.
- Die Türkontakte des Trafoschrankes sowie des Leistungszellenschrankes sind Schließer-Kontakte und sämtliche Türen sind geschlossen und verriegelt ⇒ Schließer-Kontakte sind betätigt.
- Die Mittelspannung (MS) ist *nicht* zugeschaltet (MS-Hauptschalter ist geöffnet).

Legende zur vorstehenden Abbildung.

- : betätigter Kontakt -
- E24V+ : entkoppelte Versorgungsspannung
 - : Funktion und Arbeitsweise dieser digitalen Eingänge ist abh. von den Parametern Freigabe: Rückwärtslauf und Fern-START/STOP: DI-Modus
- ** : Die aktiven Steuersignale sind gemäß IEC redundant ausgeführt
- *** : Drehzahlgeber

DIE OBEREN KLEMMLEISTENBLÖCKE

Die Schnittstellensignale der oberen Klemmleistenblöcke XS1, XS2, XS3, XS4 und XS9 setzen sich aus externen Fern-Eingangssignalgruppen 1, Signalen im FU-Schrank und Erregungsrückführungssignalen zusammen. Die 24V+ Spannungsversorgung 6 wird intern vom FU gespeist. Anschließend wird von einem DC/DC-Modul die Spannung E24 V+ erzeugt, um den dezentralen Signalteil 1), 3) und 4) der Schaltung mit Spannung zu versorgen. Die Fernsignale sind durch Relais von der SPS galvanisch entkoppelt.

Abb. 3-36 I/O-Schnittstelleneinheit – obere Klemmenleistenblöcke und SPS

1 2

ß

- Externe Steuersignale (Fern)
- Gemeinsamer Anschluss E24 V+
- Externe Status- und Fehlermeldungen
- Galvanische Entkopplung (Relais)
- 4
- 6 Interne Signale aus FU-Anlage 6
 - Gemeinsame Klemme 1, Spannungsversorgung, Temperaturerfassung und Erregungsrückführung

7 Speicherprogrammierbare Steuerung (SPS)

Die oberen Klemmleistenblöcke sind mit digitalen Eingangssignalen für die Betriebsart Fernsteuerung (DI) und den FU-Statusmeldungen verbunden. Ferner ist ein Analogeingang (0/4 bis 20 mA) für eine Erregerstrom-Rückführung sowie ein weiterer analoger Eingang zur Erfassung der Zellenschranktemperatur verfügbar. Die Lastimpedanz darf maximal 500 Ω betragen.

Die Fernsteuerung (DI) unterstützt zwei unterschiedliche Signalarten: Pegelsignale und Impulssignale. Der Modus der zu verwendenden Signalart kann über den Parameter Fern - START/STOP: DI-Modus eingestellt werden.

	HI	WEIS
=	\triangleright	Die S
=		frei a
		dat la

≻	Die Signalkontakte für die digitalen Eingänge müssen potential-
	frei ausgeführt sein. Werden mehrere digitale Eingänge verwen-
	det, kann das E24V+ Potential gewurzelt genutzt werden.

- Das Fernrücksetzsignal der I/O-Schnittstelleneinheit hat die gleiche Funktion wie die Schaltfläche RESET des HMI. Liegen keine Störungen des FU vor, hat ein Zurücksetzen keinen Einfluss auf den Betrieb des Systems. Das Zurücksetzen im laufenden Betrieb führt nicht zur Abschaltung des FU.
- Nachdem ein Fehler aufgetreten ist und der Fehler behoben wurde, muss das Steuersystem zurückgesetzt werden, um den FU in den normalen Betriebszustand zurückzuführen.

Die Anschlüsse für *digitale Eingänge (DI)* der oberen Klemmleistenblöcke auf der I/O-Schnittstelleneinheit sind wie folgt definiert:

Klemmen- block	Klemmen- Nr.	DI-Bezeichnung	DI-Schaltlogik/ Signalmodus	Beschreibung der DI-Funktion
	10	Fern-Start/Stopsignal	Arbeitsstromprinzip/ Pegel- oder Impulssig-	DI ist nur wirksam für die Parametereinstellung: Betriebsart = Fernsteuerung (DI).
			nal (parametrierbar)	Für den Parameter <i>Fern START/STOP: DI- Modus</i> stehen zwei verschiedene Signalmodi als Einstelloptionen zur Verfügung:
				Einstellung: <i>Pegelsignal:</i>
				DI aktiv (Signalkontakt geschlossen): ⇒ Motor startet vorwärts, wenn Sollfrequenz > 0 Hz
				⇒ Motor startet rückwärts, wenn:
				 Parametereinstellung: Freigabe Rückwärtslauf = Aktiviert und
				 Sollfrequenz < 0 Hz (negativer Sollwert) und
				 der DI Fern-Start/Stopsignal (Klemmen: - XS1:1,9) zusätzlich aktiviert wird.
				DI inaktiv (Signalkontakt geöffnet): ⇒ Motor stoppt (Vorwärtslauf)
				Einstellung: Impulssignal:
-XS1				DI aktiv (Signalkontakt muss für mindestens 500 ms geschlossen sein): ⇒ Motor startet vorwärts (Sollfrequenz >0 Hz) bzw. rückwärts (Sollfrequenz < 0 Hz)
	9	Fern-Start/Stopsignal	Arbeitsstromprinzip/ Pegel- oder Impulssig- nal (parametrierbar)	DI ist nur wirksam für die Parametereinstellung: Betriebsart = Fernsteuerung (DI).
				Für den Parameter <i>Fern START/STOP: DI- Modus</i> stehen zwei verschiedene Signalmodi als Einstel- loptionen zur Verfügung:
				Einstellung: <i>Pegelsignal:</i>
				DI aktiv (Signalkontakt geschlossen): ⇒ Motor startet rückwärts, wenn:
				• <i>Sollfrequenz</i> < 0 Hz und
				 wenn der DI Fern-Start/Stopsignal (Klem- men: -XS1:1,10) bereits aktiviert ist.
				 DI inaktiv (Signalkontakt geöffnet): ⇒ Motor stoppt (Rückwärtslauf) unabhängig vom Zustand des DI <i>Fern-Start/Stopsignal</i> (Klemmen: -XS1:1,10)
				• Einstellung: Impulsmodus:

Klemmen- block	Klemmen- Nr.	DI-Bezeichnung	DI-Schaltlogik/ Signalmodus	Beschrelbung der DI-Funktion
				DI aktiv (Signalkontakt muss für mindestens 500 ms geschlossen sein): ⇒ Motor stoppt
	8	FU-Freigabe extern	Arbeitsstromprinzip/ Pegelsignal	DI aktiv (Signalkontakt geschlossen): ⇒ der FU-Ausgang freigegeben (d.h. der Startbefehl für den Motor kann abgesetzt werden) Für den FU-Betrieb muss der Signalkontakt geschlossen sein.
				 DI inaktiv (Signalkontakt geöffnet): ⇒ der FU-Ausgang gesperrt (d.h. der Startbefehl für den Motor kann nicht abgesetzt werden)
				HINWEIS: Die digitalen Ausgänge (DO) <i>MS-</i> <i>Hauptschalter EIN 1</i> und <i>MS-</i> <i>Hauptschalter EIN 2</i> bleiben unabhängig von dem Signalstatus des DI <i>FU-Freigabe extern</i> eingeschaltet.
	7	Sollfrequenz 1	Arbeitsstromprinzip/	Dls sind nur wirksam für die Parametereinstel-
	6	Sollfrequenz 2	Arbeitsstromprinzip/	gabe über DI)
	5	Sollfrequenz 3	Arbeitsstromprinzip/ Pegelsignal	Über die drei DIs wird die Sollfrequenz für den FU-Ausgang eingestellt. Die Vorgabe der Sollfrequenz erfolgt gemäß einer Kodierung der binären Zustände (DI aktiv/inaktiv) der drei DIs sowie der mit Parameter <i>Sollwert- vorgabe über DI</i> eingestellten <i>Drehzahlsektion 3</i> bzw. <i>Drehzahlsektion 7</i> .
	4	Fernumschaltung Betriebsart	Arbeitsstromprinzip/ Pegelsignal	DI ist nur wirksam für die Parametereinstellung Freigabe: Fernumschaltg. Betriebsart = Aktiviert.
				DI aktiv (Signalkontakt geschlossen): ⇒ Betriebsart: Fernbetrieb (DI)
				DI inaktiv (Signalkontakt geöffnet): ⇒ Betriebsart: Lokale Bedienung (HMI)
	3	Externer RESET	Arbeitsstromprinzip/ Impulssignal	Die Funktion <i>Externer RESET</i> entspricht der Funktion der Schaltfläche <i>RESET</i> des HMI.
				DI aktiv (Signalkontakt geschlossen): ⇒ Alle aktiven Fehlermeldungen werden zu- rückgesetzt, sofern ihre Fehlerursachen be- seitigt sind
				DI inaktiv (Signalkontakt geöffnet): ⇒ keine Funktion
	10	Externer Fehler 1	Arbeitsstromprinzip/ Pegelsignal	Die Funktion <i>Externer Fehler 1</i> entspricht der Funktion des Tasters <i>NOT-AUS</i> an der Schranktür des FU-Steuerfeldes.
				DI aktiv (Signalkontakt geschlossen): ⇒ Die MS-Netzspannung wird abgeschaltet (FU- Hauptschütz)
				DI inaktiv (Signalkontakt geöffnet): ⇒ keine Funktion
-XS2	9	Externer Fehler 2	Arbeitsstromprinzip, Pegelsignal	Die Funktion <i>Externer Fehler 2</i> entspricht der Funktion des Tasters <i>NOT-AUS</i> an der Schranktür des FU-Steuerfeldes.
				DI aktiv (Signalkontakt geschlossen): ⇒ Die MS-Netzspannung wird abgeschaltet (FU- Hauptschütz)
				DI inaktiv (Signalkontakt geöffnet): ⇒ keine Funktion
	8	Start Synchrone Um- schaltung	Arbeitsstromprinzip, Pegelsignal	DI ist nur wirksam für die Parametereinstellung Umschaltungsfreigabe: FU<->Netz = Aktiviert.
				DI aktiv (Signalkontakt geschlossen): ⇒ Synchrone Umschaltung startet

Klemmen- block	Klemmen- Nr.	DI-Bezelchnung	DI-Schaltlogik/ Signalmodus	Beschreibung der DI-Funktion
				DI inaktiv (Signalkontakt geöffnet): ⇒ keine Funktion
	7	Erregersystem bereit	Arbeitsstromprinzip, Pegelsignal	Statussignal aus externem Erregersystem (nur für Synchronmotoren).
				 DI aktiv (Signalkontakt geschlossen): ⇒ Das externe Erregersystem ist bereit, um den Erregungsvorgang zu starten
				 DI inaktiv (Signalkontakt geöffnet): ⇒ Das externe Erregerfeld ist nicht bereit, um den Erregungsvorgang zu starten
	6	Erregersystem Be- trieb″	Arbeitsstromprinzip, Pegelsignal	Rückmeldesignal aus externem Erregerfeld (nur für Synchronmotoren).
				DI aktiv (Signalkontakt geschlossen): ⇒ Das externe Erregerfeld ist in Betrieb
				DI inaktiv (Signalkontakt geöffnet): ⇒ Das externe Erregerfeld ist nicht in Betrieb
	5	Erregersystem Fehler	Arbeitsstromprinzip, Pegelsignal	Fehlersignal aus externem Erregerfeld (nur für Synchronmotoren).
				DI aktiv (Signalkontakt geschlossen): → Fehler im externen Erregerfeld
				DI inaktiv (Signalkontakt geöffnet): ⇒ Kein Fehler im externen Erregerfeld
	4	Alarm Lüfterausfall)	Arbeitsstromprinzip/ Pegelsignal	Meldesignal, dass alle Leistungschutzschalter der Lüfter eingeschaltet sind.
				 DI aktiv (Signalkontakt geschlossen): ⇒ sämtliche Leistungsschutzschalter der Lüfter sind geschlossen
				 DI inaktiv (Signalkontakt geöffnet): ⇒ mindestens ein Leistungsschutzschalter hat ausgelöst
	3	Lüfter EIN	Arbeitsstromprinzip/ Pegelsignal	Rückmeldung, dass sämtliche Lüfter eingeschal- tet sind. DI aktiv (Signalkontakt geöffnet): ⇒ sämtliche Hilfskontakte der Lüfterschütze sind geschlossen
				 DI inaktiv (Signalkontakt geschlossen): ⇒ mindestens ein Hilfskontakt der Lüfter- schütze ist geöffnet
	10	Türalarm Zellen- schrank	Arbeitsstromprinzip/ Pegelsignal	Jede Leistungszellen-Schranktür besitzt einen Türschlüsselschalter, dessen Signalkontakt (Schließer) bei geschlossener Tür geschlossen ist. Alle Türschalterkontakte sind in Reihe geschaltet.
-XS3				DI aktiv (Signalkontakt geschlossen): ⇒ sämtliche Leistungszellen-Schranktüren sind geschlossen und verriegelt
				 DI inaktiv (Signalkontakt geöffnet): ⇒ mindestens eine Leistungszellen-Schrank- türen ist entriegelt
				⇒ für die Parametereinstellung: Offene Schranktür: Störungsauswahl = Fehler wird eine Fehlermeldung Fehler: Türalarm Zellen- schrank ausgegeben und der FU schaltet ab!
				⇒ für die Parametereinstellung: Offene Schranktür: Störungsauswahl = Alarm wird nur eine Alarmmeldung Alarm: Türalarm Zel- lenschrank ausgegeben; der FU bleibt in Be- trieb
	9	Türalarm Trafo- schrank	Arbeitsstromprinzip/ Pegelsignal	Jede Trafo-Schranktür besitzt einen Türschlüsselschalter, dessen Signalkontakt

Klemmen- block	Klemmen- Nr.	DI-Bezeichnung	DI-Schaltlogik/ Signalmodus	Beschreibung der DI-Funktion
				 (Schließer) bei geschlossener Tür geschlossen ist. Alle Türschalterkontakte sind in Reihe geschaltet. DI aktiv (Signalkontakt geschlossen): ⇒ alle Trafo-Schranktüren sind geschlossen und verriegelt DI inaktiv (Signalkontakt geöffnet): ⇒ mindestens eine Trafo-Schranktür ist entriegelt ⇒ für die Parametereinstellung: Offene Schranktür: Störungsauswahl = Fehler wird eine Fehlermeldung Fehler: Türalarm Tra- foschrank ausgegeben und der FU schaltet abl ⇒ für die Parametereinstellung: Offene Schranktür: Störungsauswahl = Alarm wird
				nur eine Alarmmeldung <i>Alarm: Turalarm</i> <i>Trafoschrank</i> ausgegeben; der FU bleibt in Betrieb HINWEIS: Für Trafoschränke <i>ohne</i> Türen ist disser DL mit +24 VDC zu beschalten
	8	Fehler: Übertemp. Trafo	Arbeitsstromprinzip/ Pegelsignal	Dieser DI ist nur in Verbindung mit einem externen Temperaturüberwachungsrelais zu verwenden.
				 DI aktiv (Signalkontakt geschlossen): ⇒ mindestens einer der drei Sensoren zur Trafo-Temperaturüberwachung meldet eine Übertemperatur: ϑ ≥ 150 °C ⇒ FU schaltet ab!
				DI inaktiv (Signalkontakt geöffnet): ⇒ keiner der drei Sensoren zur Trafo- Temperaturüberwachung misst eine Übertemperatur: ϑ < 150 °C
				HINWEIS: wird <i>kein Sensor</i> verwendet wird, muss Klemme 8 unbeschaltet (offen) bleiben.
	7	Alarm: Übertemp. Trafo	Arbeitsstromprinzip/ Pegelsignal	Dieser DI ist nur in Verbindung mit einem externen Temperaturüberwachungsrelais zu verwenden.
				 DI aktiv (Signalkontakt geschlossen): ⇒ mindestens einer der drei Sensoren zur Trafo-Temperaturüberwachung meldet eine Übertemperatur: ϑ ≥ 95 °C ⇒ FU schaltet <u>nicht</u> ab
				 DI inaktiv (Signalkontakt geöffnet): ⇒ keiner der drei Sensoren zur Trafo- Temperaturüberwachung misst eine Übertemperatur: θ < 95 °C
				HINWEIS: Wird <u>kein</u> Sensor verwendet wird, muss Klemme 7 unbeschaltet (offen) bleiben.
	6	RESET Tür-Taster	Arbeitsstromprinzip/ Pegelsignal	 DI aktiv (Signalkontakt geschlossen): ⇒ Sämtliche Fehlermeldungen werden zurück- gesetzt, sofern ihre Fehlerursachen beseitigt sind ⇒ das NOT-AUS-Sicherheitsrelais wird zurück- gesetzt, sofern die Ursache für den NOT-AUS beseitigt ist und die NOT-AUS-Signalkette (2- kanalig) wieder geschlossen ist

Klemmen- block	Klemmen- Nr.	DI-Bezelchnung	DI-Schaltlogik/ Signalmodus	Beschrelbung der DI-Funktion
				\Rightarrow Die FU-Steuereinheit wird zurückgesetzt.
				DI inaktiv (Signalkontakt geöffnet): → keine Funktion
	5	NOT-AUS	Arbeitsstromprinzip/ Pegelsignal	Die Funktion <i>NOT-AUS</i> dient zur Abschaltung der Mittelspannung über eine vorgelagerte Haupt- schaltelement, wenn ein NOT-AUS-Schalter betä- tigt wird.
				DI aktiv (Signalkontakt geschlossen): ⇒ ein NOT-AUS-Schalter wurde betätigt und die Mittelspannung über das vorgelagerte Haupt- schaltelement ausgeschaltet
				DI inaktiv (Signalkontakt geöffnet): ⇒ keine Funktion
	4	MS nicht bereit	Arbeitsstromprinzip / Pegelsignal	Quell-Terminal: <i>Baugruppe Spannungsversor- gung AP5,</i> Klemme: <i>HV-OFF</i>
				DI aktiv (<i>AP5</i> : interner Signalkontakt geschlossen, <i>HV-OFF</i> : +24 V DC):
				⇒ MS nicht bereit, Mittelspannung ist nicht ein- geschaltet
				DI inaktiv (<i>AP5</i> : interner Signalkontakt geöffnet, <i>HV-OFF</i> : 0 V):
				⇒ MS bereit, Mittelspannung ist eingeschaltet
	3	Steuereinheit bereit	Arbeitsstromprinzip/ Pegelsignal	Quell-Terminal: <i>Baugruppe Spannungsversor- gung AP5</i> , Klemme: <i>PRDY</i>
				DI aktiv (AP5: interner Signalkontakt geschlossen, PRDY: +24 V DC): ⇒ die Steuereinheit ist bereit
				DI inaktiv (AP5: interner Signalkontakt geöffnet, PRDY: 0 V):
				⇒ die Steuereinheit ist nicht bereit

Tab. 3-7	Obere Klemmleistenblöcke – Anschlüsse (Dl	()
100.01		/

Die Anschlüsse für *analoge Eingänge (AI)* der oberen Klemmleistenblöcke auf der I/O-Schnittstelleneinheit sind wie folgt definiert:

Klemmen- block	Klemmen- Nr.	Al-Bezeichnung	AI-Spezifikation	Beschreibung der Al-Funktion
	2	Erregerstrom-Istwert	Al/Strom: 0/4 20 mA	Der Messbereich der Übertragungskennlinie für den Erregerstrom-Istwert kann mit den Parame- tern:
				AI 3 (Ist-Erregerstrom): Messbereich-Anfang und AI 3 (Ist-Erregerstrom): Messbereich-Ende
				eingestellt werden.
-XS4				Messbereich-Anfang ≙ 0 A Messbereich-Ende ≙ Parameter <i>Motor: Erreger-</i> <i>nennstrom</i>
				Die Genauigkeit beträgt 1,5 %.
	4	Temperatur Zellen-	AI/PT-100 Sensor	Sensor für die Temperaturüberwachung im Zel-
	5 6	SCHLANK		lenschrank
	7 8	<i>Spannungsversorgung</i> <i>SPS, -XS1 bis -XS4 und</i> <i>-XS9</i>	24V+ 0V	24 V+ Spannungsversorgung für die interne SPS: +24 V DC Bezugspotential
- <i>XS9</i>		Spannungsversorgung		Spannungsversorgung für weitere externe Sig-
	1	TUI CALEITI	E24V+	pos. Potential der Versorgungsspannung
	2		E24V+	pos. Potential der Versorgungsspannung
	3		E24V+	pos. Potential der Versorgungsspannung

Tab. 3-8 Obere Klemmleistenblöcke – Anschlüsse (Al)

DIE UNTEREN KLEMMLEISTENBLÖCKE

Die untere Klemmenleiste dient dem Anschluss:

- der Statusausgangssignale
- des Verriegelungssignals des Hauptschalters der vorgelagerten Mittelspannungsschaltanlage
- der analogen Ein- und Ausgänge und Hauptprozessor-Baugruppe bereit
- der Kommunikationsschnittstelle RS485 (Modbus) für Prozessleittechnik

Die Anschlüsse der Klemmenblöcke -XS11, -XS12 und -XS13 sind für Spannungen bis 250 V AC / V DC und 8 A Dauerstrom ausgelegt. Wenn ein höherer Strom- oder Spannungswert erforderlich ist, sind Koppelrelais zu verwenden, um die Ausgangsleistung zu erhöhen.

Die Analogen Eingänge (AI) müssen mit geschirmten Leitungen verlegt und angeschlossen werden, Eingangsimpedanz \geq 250 Ω , max. Eingangsstrom 30 mA (max. Eingangsspannung 15 V).

Der digitale Ausgang (DO) für *Synchronisierung erfolgreich* wird nur bei der Funktion *Synchrone Umschaltung* verwendet.

	HI	HINWEIS			
\equiv	Die <i>ter</i> ter	Die digitalen Ausgänge <i>MS-Hauptschalter EIN 1/</i> 2 und <i>MS-Hauptschal- ter AUS 1/2</i> sind zur Verriegelung des vorgelagerten MS-Hauptschal- ters vorgesehen.			
	Die EIN-Signale sind Schließer-Kontakte, mit denen der Strom kreis des vorgelagerten Hauptschalters eingeschaltet wird.				
	 Die AUS-Signale sind Schließer-Kontakte, mit denen der kreis des vorgelagerten Hauptschalters ausgeschaltet wir 				
 Aus Sicherheitsgründen sind die EIN- und AUS- ausgeführt. 		Aus Sicherheitsgründen sind die EIN- und AUS-Signale 2-kanalig ausgeführt.			
		Der Anschluss erfolgt über die Kundenklemmleiste.			

Die Anschlüsse für *digitale Ausgänge (DO)* der unteren Klemmleistenblöcke auf der I/O-Schnittstelleneinheit sind wie folgt definiert:

Klemmen- block	Klemmen- Nr.	DO-Bezeichnung	Spezifi- kation	DO-Schaltbedingungen
1 MS Bereit 1 8 A, 250 V AC Relaiskontakte (Schließer) schlie • sobald der DI MS Nicht Bereit • sobald mindestens eine Alarm • sobald die Alarmmeldung inak • sobald die Alarmmeldung inak • sobald mindestens eine Fehler • sobald sämtliche Fehlermeldu • sobald sämtliche Fehlermeldu • sind (HMI: Schaltfläche RESET • Kommunikation).	1 2	MS Bereit 1	8 A, 250 V AC	Relaiskontakte (Schließer) schließen , • sobald der DI <i>MS Nicht Bereit (HV-OFF)</i> inaktiv ist.
	3 4	MS Bereit 2	8 A, 250 V AC	Relaiskontakte (Schließer) öffnen , • sobald der DI <i>MS Nicht Bereit (HV-OFF)</i> aktiv ist.
	5 6	Störung 1	8 A, 250 V AC	Alarmmeldungen: Relaiskontakte (Schließer) schließen und öffnen zyklisch
	 (15 Z)KIUS: 0,3 S EIN 7 0,3 S AUS), sobald mindestens eine Alarmmeldung aktiv ist. Relaiskontakte öffnen, sobald die Alarmmeldung inaktiv ist. 			
				Fehlermeldungen: Relaiskontakte (Schließer) schließen , • sobald mindestens eine Fehlermeldung aktiv ist.
				 Relaiskontakte (Schließer) öffnen, sobald sämtliche Fehlermeldungen inaktiv und quittiert sind (HMI: Schaltfläche <i>RESET</i> oder digitaler Eingang: <i>Externer RESET</i> oder <i>RESET-Befehl</i> über PLS- Kommunikation).

AUFBAU UND FUNKTIONEN

Klemmen- block	Klemmen- Nr.	DO-Bezelchnung	Spezifi- kation	DO-Schaltbedingungen	
	9 10	Betrieb 1	8 A, 250 V AC	Für die Parametereinstellung <i>FU-Modus = Betrleb</i> gilt: Relaiskontakte (Schließer) schließen , sobald die folgenden	
	1 2	Betrieb 2	8 A, 250 V AC	 Kriterien erfüllt sind: der DI <i>MS Nicht Bereit (HV-OFF)</i> ist Inaktiv und keine aktiven Fehlermeldungen und der DI <i>NOT-AUS</i> ist Inaktiv und sämtliche Leistungszellen den Leistungszellen-Status <i>Normal</i> aufweisen und sämtliche Leistungszellen-Bypass-Einheiten den Status <i>Normal</i> aufweisen und der FU ist über ein START-Befehl in Betrieb gesetzt worden. Relaiskontakte (Schließer) öffnen, sobald der FU durch mindestens eins der vorstehenden Kriterien abschaltet oder der Motor über ein STOP-Befehl ausgeschaltet wird. 	
				 <u>Für die Parametereinstellung <i>FU-Modus = Test</i> gilt:</u> Relaiskontakte (Schließer) schließen, sobald die folgenden Kriterien erfüllt sind: keine aktiven Fehlermeldungen und der DI <i>NOT-AUS</i> ist inaktiv und der FU ist über ein START-Signal in Betrieb gesetzt worden. 	
				 Relaiskontakte (Schließer) öffnen, sobald der FU durch mindestens eins der vorstehenden Kriterien abschaltet oder der Motor über ein STOP-Signal ausgeschaltet wird. 	
-XS12	3 4	MS-Hauptschalter EIN 1	8 A, 250 V AC	<u>Für die Parametereinstellung</u> <i>FU-Modus = Betrleb</i> gilt: Relaiskontakte (Schließer) schließen , sobald die folgenden	
	5 6	MS-Hauptschalter EIN 2	8 A, 250 V AC	 Kriterien erfüllt sind: keine aktiven Fehlermeldungen und der DI <i>NOT-AUS</i> ist inaktiv und sämtliche Leistungszellen den Leistungszellen-Status <i>Normal</i> aufweisen und sämtliche Zellen-Bypass-Einheiten den Überwachungsstatus <i>Normal</i> aufweisen. 	
				Relaiskontakte (Schließer) öffnen, • sobald keins der vorstehenden Kriterien mehr erfüllt ist.	
				 <u>Für Parametereinstellung</u> <i>FU-Modus = Test</i> gilt: Relaiskontakte (Schließer) schließen, sobald die folgenden Kriterien erfüllt sind: keine aktiven Fehlermeldungen und der DI <i>Externer Fehler (NOT-AUS)</i> ist inaktiv 	
				Relaiskontakte (Schließer) öffnen, • sobald keins der vorstehenden Kriterien mehr erfüllt ist.	
	7 8	MS-Hauptschalter AUS 1	8 A, 250 V AC	Relaiskontakte (Schließer) schließen, • sobald der <i>FU-Modus = Test</i> eingestellt ist oder	
	9 10	MS-Hauptschalter AUS 2	8 A, 250 V AC	 weini der <i>FO-Modus</i> = <i>Betrieb</i> eingesteht ist und mindestens eine Fehlermeldung aktiv ist. Relaiskontakte (Schließer) öffnen, sobald der <i>FU-Modus</i> = <i>Betrieb</i> eingestellt ist und keine der möglichen Fehlermeldungen aktiv ist. 	
	1 2	Störung: Fehler (Schließer)	8 A, 250 V AC	Der Relaiskontakt (Schließer) schließt, • sobald mindestens eine Fehlermeldung aktiv ist.	
-XS13				 Der Relaiskontakt (Schließer) öffnet, sobald sämtliche Fehlermeldungen inaktiv und quittiert sind (HMI: Schaltfläche <i>RESET</i> oder digitaler Eingang: <i>Externer RESET</i> oder <i>RESET-Befehl</i> über PLS- Kommunikation). 	

Klemmen- block	Klemmen- Nr.	DO-Bezeichnung	Spezifi- kation	DO-Schaltbedingungen	
	3 4	Störung: Fehler (Öffner)	8 A, 250 V AC	Der Relaiskontakt (Öffner) öffnet, • sobald mindestens eine Fehlermeldung aktiv ist.	
				 Der Relaiskontakt (Öffner) schließt, sobald sämtliche Fehlermeldungen inaktiv und quittiert sind (HMI: Schaltfläche <i>RESET</i> oder digitaler Eingang: <i>Externer RESET</i> oder <i>RESET-Befehl</i> über PLS- Kommunikation). 	
	5 6	Lüfter aktiv 1	8 A, 250 V AC	 Die Relaiskontakte (Schließer) schließen, wenn: im <i>FU-Modus = Betrieb</i> die Rückmeldung für <i>Lüfter EIN</i> (-XS2:3) aktiv ist und der FU in Betrieb ist oder im <i>FU-Modus = Test</i>, die Funktionsschaltfäche <i>START</i> im Menü <i>Funktionsparameter 3</i> betätigt wird. 	
	7 8	Lüfter aktiv 2	8 A, 250 V AC	 Die Relaiskontakte (Schließer) öffnen, wenn im <i>FU-Modus = Betrieb</i> die Rückmeldung für <i>Lüfter EIN</i> (-XS2:3) inaktiv ist und der FU in Betrieb ist oder im <i>FU-Modus = Test</i> die Funktionsschaltfäche <i>STOP</i> im Menü <i>Funktionsparameter 3</i> betätigt wird. 	
	9 10	SyncMotor: Erregung EIN	16 A, 250 V AC	 Befehl an das externe Erregerfeld zur Einschaltung der Erregung (nur für Synchronmotoren). Der Relaiskontakt (Schließer) schließt, in Abhängigkeit der Einstellungen im Menü Erregersystem. 	
	1 2	Fernbedienung (DI) aktiv	16 A, 250 V AC	<u>Dieser DO gilt nur Parametereinstellung <i>Freigabe:</i> <i>Fernumschaltg. Betriebsart = Aktiviert</i>: Der Relaiskontakt (Schließer) schließt,</u>	
				 wenn der DI <i>Fernumschltg. Betriebsart</i> aktiv ist. Der Relaiskontakt (Schließer) öffnet, sobald der DI <i>Fernumschltg. Betriebsart</i> inaktiv ist. 	
	3 4	Schranktür offen	16 A, 250 V AC	 Der Relaiskontakt (Schließer) schließt, sobald eine Schranktür des Trafofeldes oder des Leistungszellenfeldes entriegelt/geöffnet wird (DI <i>Türalarm Zellenschrank</i> oder DI <i>Türalarm Trafoschrank</i> ist inaktiv) 	
				 Der Relaiskontakt (Schließer) öffnet, sobald alle Schranktüren des Trafofeldes und des Leistungszellenfeldes geschlossen und verriegelt sind (DI <i>Türalarm Zellenschrank</i> und DI <i>Türalarm</i> <i>Trafoschrank</i> sind aktiv). 	
-XS14	5 6	Übertemp. Leistungszellen- schrank	16 A, 250 V AC	 Der Relaiskontakt (Schließer) schließt, sobald der Sensor zur Temperaturüberwachung in dem Leistungszellenfeld (Al: -XS4:4,5,6) eine Übertemperatur (θ ≥ 55 °C) meldet. 	
				 Der Relaiskontakt (Schließer) öffnet, sobald der Sensor zur Temperaturüberwachung in dem Leistungszellenfeld (Al: -XS4:4,5,6) keine Übertemperatur (θ < 55 °C) meldet. 	
	7 8	Alarm Lüfterfehler	16 A, 250 V AC	Der Relaiskontakt (Schließer) schließt, • sobald mindestens einer der Lüfter eine Störung meldet (DI <i>Alarm Lüfterausfall</i> ist aktiv)	
				 Der Relaiskontakt (Schließer) öffnet, sofern alle Lüfter störungsfrei sind (DI Alarm Lüfterausfall ist inaktiv) 	
	9 10	Alarm: Übertemp. Trafo	16 A, 250 V AC	Dieser DO ist nur in Verbindung mit einem externen Temperaturüberwachungsrelais zu verwenden.	
				 Der Relaiskontakt (Schließer) schließt, sobald mindestens einer der drei Sensoren zur Trafo- Temperaturüberwachung eine Übertemperatur (∂≥95 °C) meldet (DI Alarm: Übertemp. Trafo ist aktiv) 	

Klemmen- block	Klemmen- Nr.	DO-Bezelchnung	Spezifi- kation	DO-Schaltbedingungen
				 Der Relaiskontakt (Schließer) öffnet, wenn alle drei Sensoren zur Trafo-Temperaturüberwa- chung <u>keine</u> Übertemperatur (ϑ < 95 °C) melden (DI <i>Alarm: Übertemp. Trafo</i> ist inaktiv).
	1 2	FU Bereit	16 A, 250 V AC	 <u>Für die Parametereinstellung FU-Modus = Betrleb gilt</u>: Der Relaiskontakt (Schließer) schließt, sobald sämtliche internen Prüfvorgänge der Steuereinheit erfolgreich abgeschlossen sind und die Mittelspannung zugeschaltet ist. Der Relaiskontakt öffnet, sobald die Mittelspannung abgeschaltet wird (kontrollierter Schaltbefehl) oder ein Fehler- oder Alarm-Ereignis aktiv ist.
				 <u>Für die Parametereinstellung FU-Modus = Test gilt:</u> Der Relaiskontakt (Schließer) schließt, sobald sämtliche internen Prüfvorgänge der Steuereinheit erfolgreich abgeschlossen sind und die Mittelspannung nicht zugeschaltet ist. Der Relaiskontakt öffnet, sobald die Mittelspannung aufgeschaltet wird (fehlerhafter Schaltbefehl) oder ein anderes Fehler- oder Alarm-Ereignis aktiv ist
-XS15				HINWEIS: Der digitale Ausgang <i>FU Bereit</i> entspricht der LED-Statusanzeige <i>FU Bereit</i> im Display der Bedieneinheit.
	3 4	Synchronisierung erfolg- reich	16 A, 250 V AC	 Synchronisiervorgang für die Fkt. Synchrone Umschaltung. Der Relaiskontakt (Schließer) schließt, sobald die FU-Ausgangsspannung mit der MS- Netzspannung synchronisiert ist; d.h. die gemessene Phasenwinkeldifferenz liegt innerhalb der mit Parameter Synchronisierung: Max. zul. Δφ eingestellten Phasenwinkeldifferenz und die Spannungen weisen jeweils den gleichen Betrag auf).
				 wenn die Synchronitätsbedingungen nicht mehr erfüllt sind.
	5	I/O-Schnittstelleneinheit bereit	16 A, 250 V AC	Der Relaiskontakt (Schließer) schließt , • sobald die interne SPS betriebsbereit ist. PENL DI-COM
	7 6 8	FU-Steuereinheit RESET	16 A, 250 V AC	Der Relaiskontakt (Schließer) schließt , • sobald die Steuereinheit einen internen Fehler detektiert n.b. DI-COM PRST

Tab. 3-9 Untere Klemmleistenblöcke – Anschlüsse (DI, DO)

Die Anschlüsse für analoge Ein- und Ausgänge (AI, AO) der unteren Klemmleistenblöcke
auf der I/O-Schnittstelleneinheit sind wie folgt definiert:

Klemmen-	Klemmen- Nr	Al- bzw. AO- Bezeichnung	Al- bzw. Al- Spezifikation	Beschreibung der AI- bzw. AI-Funktion
-XS16		Spannungsversorgung	opozimation	Spannungsversorgung für untere Klemmleisten-
	1			blöcke
	2		+24 V DC 0 V	
	3		n.b.	
		Kommunikation Prozess- Ieittechnik (PLS)		Kommunikationsschnittstelle für Prozessleitsys- tem (PLS)
-XS17	1 2 3		RS485+ RS485- GND	RS485A: RxD/TxD "High"-Pegel RS485B: RxD/TxD "Low"-Pegel Erdung und Schirmung
	1 2	Al 1: f/n-Sollwertvorgabe	Analogeingang (Al): Strom: 0/4 20 mA	Der Messbereich der Übertragungskennlinie für den Frequenz/Drehzahl-Sollwert kann mit den Parametern:
				<i>AI 1 (f/n Soll-Wert): Messbereich-Anfang</i> und <i>AI 1 (f/n Soll-Wert): Messbereich-Ende</i>
				eingestellt werden.
				Messwertskala-Anfang ≙ 0 Hz Messwertskala-Ende ≙ Parameter: <i>Maximale Fre-</i> <i>quenz</i>
				Die Genauigkeit beträgt 1,5 %.
	3 4	Al 2: f/n Istwert	Analogeingang (Al): Strom: 0/4 20 mA	Der Messbereich der Übertragungskennlinie für den Frequenz/Drehzahl-Istwert kann mit den Pa- rametern:
				<i>AI 2 (f/n Ist-Wert): Messbereich-Anfang</i> und <i>AI 2 (f/n Ist-Wert): Messbereich-Ende</i>
				eingestellt werden.
				Messwertskala-Anfang ≙ 0 Hz Messwertskala-Ende ≙ 100 %
				Die Genauigkeit beträgt 1,5 %.
	5	AO 3: Ausgangsfrequenz	Analogausgang (AO):	Übertragungsgröße: Frequenz am FU-Ausgang
	6		Strom: 4 20 mA	Messbereich-Anfang ≙4mA Messbereich-Ende ≙20mA
-XS18				Messwertskala-Anfang ≙0Hz Messwertskala-Ende ≙ Parameter: <i>Maximale</i> <i>Frequenz</i>
				Bürde: max. 500 Ω, 10 bit A/D Abtastung, Auflösung: 0,1 % Genauigkeit: 1,0 %
	7 8	AO 4: Ausgangsstrom	Analogausgang (AO): Strom: 4 20 mA	Übertragungsgröße: Phasenstrom im FU-Aus- gang
				Messbereich-Anfang ≙ 4 mA Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≙ 0 A
				Messwertskala-Ende ≙ 150 % des Einstellwertes des Parameters
				Ausgangsnennstrom [A]
				Bürde: max. 500 Ω,
				Auflösung: 0,1%
	0	101. porometrication		Genauigkeit: 1,0%
	9 10	AU I: parametrierbar	Analogausgang (AU): Strom: 0/4 20 mA	verschiedenen Messgrößen parametriert werden.
				 Ausgangsfrequenz Messbereich-Anfang
				Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≙ 0 Hz

Klemmen- block	Klemmen- Nr.	AI- bzw. AO- Bezeichnung	Al- bzw. Al- Spezifikation	Beschreibung der Al- bzw. Al-Funktion
				Messwertskala - Ende ≙ Einstellwert des Parameters <i>Maximale Frequenz</i>
				<i>Ausgangsstrom</i> Messbereich-Anfang ≙ 4 mA Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≙ 0 A Messwertskala-Ende ≙ 150 % des Einstell- wertes des Parameters <i>Ausgangsnennstrom</i> [A]
				 Lelstungszellen-Temperatur Messbereich-Anfang ≙ 4 mA Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≙ 0 °C Messwertskala-Ende ≙ 100 °C
				• Erregerstrom (nur Synchronmotoren)
				Der Messbereich der Übertragungskennlinie für den Soll-Erregerstrom kann mit den Pa- rametern:
				AO 1(2) (Soll-Erregerstrom): MessberAnf. und AO 1(2) (Soll-Erregerstrom): MessberEnde
				eingestellt werden.
				Messwertskala-Anfang ≙ 0 Hz Messwertskala-Ende ≙ Parameter <i>Motor:</i> <i>Erregernennstrom</i>
				 Ausgangsleistung Messbereich-Anfang ≙ 4 mA Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≜ 0 A Messwertskala-Ende ≙ 150 % der <i>Aus-</i> <i>gangsnennleistung</i> [kW]
				 Ausgangsleistungsfaktor Messbereich-Anfang ≙ 4 mA Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≙ 0 Messwertskala-Ende ≙ 1
				 Ausgangsspannung Messbereich-Anfang ≙ 4 mA Messbereich-Ende ≙ 20 mA
				Messwertskala-Anfang ≙ 0V Messwertskala-Ende ≙ 150 % des Ein- stellwertes des Parameters <i>Ausgangsnennspannung</i> [V]
				Bürde max. 500 Ω, 10 bit A/D Abtastung, Auflösung: 0,1 %, Genauigkeit 1,0 %
	11 12	AO 2: parametrierbar	Analogausgang (AO): Strom: 0/4 20 mA	s. Beschreibung Analogausgang: <i>AO 1: parametrierbar</i>

Tab. 3-10 Untere Klemmleistenblöcke – Anschlüsse (Al, AO)

3.5.3 BEDIENEINHEIT HMI (TOUCHSCREEN)

AUFBAU Die Bedieneinheit des FU ist die Mensch-Maschine-Schnittstelle (engl.: human machine interface, HMI), mit der der FU lokal (vor Ort) bedient werden kann. Das HMI ist in der Schranktür des FU-Steuerfeldes installiert.

Es verfügt über ein resistives Touchscreen, einen Anschluss zur Spannungsversorgung und verschiedene Schnittstellen zur Kommunikation mit der Peripherie sowie dem Steuersystem des FU.

Eine Dichtungslippe zwischen der Frontplatte des HMI und der Schalttafel gewährleistet den erforderlichen IP-Schutzgrad.

- 1 Touchscreen mit transparenter, abziehbarer Schutzfolie
- 2 Dichtungslippe zwischen HMI und Schalttafel
- 3 HMI-Spannungsversorgung 24 V DC
- 4 (COM: D-SUB 9-polig; Stecker: nicht verwendet!)
- 5 HMI-Hardwareversion
- 6 (USB2: nicht verwendet!)
- 7 USB1

RJ45

- 8 LAN: RJ45 Schnittstelle f. Kommunikation mit I/O-Schnittstelleneinheit (SPS)
- *FUNKTIONEN* Die lokale Bedienung über das grafische Touchscreen ermöglicht die folgenden Funktionen:
 - Lesen von Daten (Parametereinstellungen, Betriebsmessdaten)
 - Lesen, Aktualisieren und Speichern von Datenaufzeichnungen (*Trendrekorder, Ereignisrekorder*)
 - Einstellen von verschiedenen Benutzerebenen (Benutzer-Login)
 - Parametereinstellungen ändern und speichern
 - Betriebsmodus: manuelles Starten und Stoppen des Motors unter Betriebsbedingungen (*FU-Monitor*)
 - Testmodus: manuelles Starten und Stoppen des Motors und Test der Peripherie ohne Aufschaltung der Mittelspannung (*FU-Monitor*)
 - Vorladesystem: manuelles Starten und Stoppen des Ladevorgangs für die Leistungszellen
 - Erregersystem (optional, nur für Synchronmotoren): manuelles Starten und Stoppen der Erregung von Synchronmotoren

ENT	Anschluss	Beschreibung
LEN	24 V DC: +	HMI-Spannungsversorgung: pos. Potential neg. Potential
	Anzeigeelement	Beschreibung
	Display	Grafikdisplay, resistiver Touchscreen; Anzeigebereich (B x H): 222 x 125 (mm)
	Schnittstellen	Beschreibung
		Schnittstelle für Speichermedium; z. B. für Exportieren von Daten
	USB1:	Typ A, 2.0; Buchse
	Ethernet (LAN):	Kommunikation zur I/O-Schnittstelleneinheit (SPS)

 Tab. 3-11
 Anschlüsse, Anzeigeelement und Schnittstellen der Bedieneinheit (HMI)

S7-Protokoll, TCP/IP

Anschluss, Anzeigeelement UND Schnittstellen

3.6 LEISTUNGSZELLE

Die Leistungszellen des FU sind elementare Bestandteile zur Erzeugung des Spannungssystems am FU-Ausgang. Die folgenden Abschnitte erläutern den mechanischen und elektrischen Aufbau der Leistungszellen.

Abb. 3-38 Typische Leistungszelle

Leistungszelle Treiber-Baugruppe Steuer-Baugruppe

3.6.1 ELEMENTE EINER LEISTUNGSZELLE

Elemente an der Vorderseite Die Leistungszellen werden in das Leistungszellenfeld eingebaut und mit Schrauben und Bolzen auf der Montageschiene befestigt. Die folgenden Abbildungen zeigen die typischen Elemente einer Leistungszelle.

Abb. 3-39 Leistungszelle 690 V – Typische Frontansicht

- 1 Ausgangsseite der Leistungszelle (Anschluss: L1)
 - Montagegriff vorne
 - Ausgangsseite der Leistungszelle (Anschluss: L2)
- 2345678 Kühlkörper
 - Typenschild der Leistungszelle
 - Sicherungen

10

- Eingangsseite der Leistungszelle (Anschlüsse: R, S, T)
- Vordere Montagepunkte der Leistungszelle
- 9 LWL-Schnittstelle zur Steuereinheit
 - Spannungs-Statusanzeige für Leistungszelle (grüne LED)

ELEMENTE AN DER RÜCKSEITE

Abb. 3-40 Leistungszelle 690 V – Typische Rückansicht

Montagegriff hinten

Prüfschnittstelle (nur für Hersteller!)

Hintere Montagepunkte der Leistungszelle

Die Leistungszellen im Schrank haben identische, elektrische und mechanische Parameter und sind austauschbar. Der dreiphasige Eingang einer Leistungszelle (R, S, T) wird mit einer Sekundärwicklung des Multi-Level-Transformators verbunden. Den einphasigen Ausgang der Leistungszellen bilden die Klemmen L1 und L2.

WARNUNG

Gefahr durch elektrischen Schlag!

An der Leistungszelle liegt auch nach dem Ausschalten des FU noch eine gefährliche Restspannung an den Eingangsklemmen R, S, T an.

Verletzungsgefahr durch elektrischen Schlag bei Berührung von unter Spannung stehenden Teilen an der Leistungszelle.

- Ausschalten der Mittelspannungseinspeisung durch vorgelagerte Hauptschaltelement.
- > Anwendung der fünf Sicherheitsregeln
- Warten Sie mindestens 10 Minuten nachdem die Statusanzeige der Leistungszelle erloschen ist, bevor Sie mit Arbeiten an den Leistungszellen beginnen.

AUSBAU DER LEISTUNGSZELLE

Nach dem Entfernen der Befestigungsschrauben, der Anschlussleitung am Eingang R, S, T, der Kupferschienen am Ausgang L1 und L2, der Lichtwellenleiter der Zelle sowie der Verbindungsschiene ist die Leistungszelle vollständig vom Zellenschrank getrennt und

kann von der Führungsschiene abgenommen werden. Der Einbau der Zelle erfolgt in umgekehrter Weise wie die Demontage.

3.6.2 ELEKTRISCHES FUNKTIONSPRINZIP

Die elektrische Topologie einer Leistungszelle ist in der folgenden Abbildung dargestellt.

Abb. 3-41 Elektrisches Prinzipschaltbild einer Leistungszelle

EINGANG LEISTUNGSZELLE:	Die Eingangsklemmen R, S, T der Leistungszelle sind mit einer dreiphasigen Sekun-
R, S, T	därwicklung des Multi-Level-Transformators verbunden.

GLEICHRICHTER Die drei Phasen des Netzes werden dann auf den *Gleichrichter* geführt. Die parallel geschalteten Dioden des dreiphasigen Vollbrückengleichrichters lassen den Strom jeweils nur in eine Richtung fließen, wodurch ein grobwelliger Gleichstromausgang erzeugt wird.

GLEICHSPANNUNGS-
ZWISCHENKREISDieser Strom fließt nun in den sog. Gleichspannungszwischenkreis,
Filterschaltung aus Kondensatoren und Widerständen eine gleichmäßige und konstante
Gleichspannung erzeugt. Hierzu setzen die Kondensatoren während der Lückzeit
Elektronen frei und glätten so die Restwelligkeit der Spannung.

- WECHSELRICHTERDer resultierende, geglättete Gleichstrom gelangt anschließend in den Wechselrichter,
der aus vier elektronischen Schaltern (Leistungs-IGBTs) in H-Brückenschaltung besteht.
Die Leistungs-IGBTs Q1 bis Q4 werden über ein Steuersignal paarweise und temporär
angesteuert, um den Stromfluss zyklisch ein und auszuschalten. Dabei bestimmt die Aus-
wahl der anzusteuernden IGBTs die Stromwege und die Dauer der angesteuerten IGBTs
die Dauer des Stromflusses in den verschiedenen Stromwegen. Auf diese Weise wird aus
der Gleichspannung des Zwischenkreises eine Wechselspannung erzeugt.
- *STEUERSIGNALE FÜR IGBTs* Die Leistungszelle empfängt von der Steuereinheit die optischen Steuersignale (LWL) für das Ein- und Ausschalten der IGBTs (Q1 bis Q4) im Wechselrichter. Am Ausgang des Wechselrichters (Anschlüsse L1 und L2) wird eine einphasige Spannung in der Form von pulsbreitenmodulierten Spannungsimpulsen (PWM) ausgegeben.

Der Spannungsimpuls am Wechselrichterausgang einer Leistungszelle kann die folgenden drei Zustände annehmen:

- 1. Wenn Q1 und Q4 eingeschaltet sind, entspricht die Ausgangsspannung der Leistungszelle der Gleichspannung des Zwischenkreises
- 2. wenn Q2 und Q3 eingeschaltet sind, entspricht die Ausgangsspannung der Leistungszelle der negativen Gleichspannung des Zwischenkreises
- Ausgang Leistungszelle:Durch eine entsprechend hohe Taktung der Steuersignale entsteht am Ausgang derL1, L2Leistungszelle eine getaktete Rechteckspannung.
- *LEISTUNGSZELLEN-BYPASS* Wenn für den Parameter *Leistungszellen-Bypass: Typ* die Einstelloption *Schütz-Bypass* (integriertes Schütz) oder *IGBT-Bypass* gewählt wurde, ist die Leistungszellen-Bypass-Funktion automatisch aktiviert.

Ist eine Leistungszelle fehlerhaft, wird ihr Status in der Statusleiste des HMI-Displays angezeigt.

Fällt eine Leistungszelle aus, wird ihr Ausgang (Q1 bis Q4) gesperrt, und der Bypass-IGBT oder den Schütz-Bypass K eingeschaltet. Dadurch wird der kontinuierliche Betrieb des FU gewährleistet.

Gleichzeitig wird der Alarm *xx Leistungszellen-Bypass* ausgegeben und in der gelben Fehlerleiste in der unteren rechten Ecke des Touchscreens angezeigt. *xx* entspricht der Nummer dieser Leistungszelle.

Steuer- UND Jede Leistungszelle verfügt über eine eigene *Steuer-Baugruppe* und eine *Treiber-Bau-ANTRIEBSBAUGRUPPE* gruppe:

- Die *Steuer-Baugruppe* ist physikalisch nur über Lichtwellenleiter mit der Steuereinheit verbunden. Dadurch sind diese Einheiten galvanisch voneinander getrennt.
- Die *Treiber-Baugruppe* wird zur Ansteuerung der IGBTs verwendet, siehe folgendes Prinzipschaltbild der Leistungszellen-Treiberplatine.

3.6.3 STEUER-BAUGRUPPE DER LEISTUNGSZELLE

Die folgende Abbildung zeigt das Wirkprinzip der Steuer-Baugruppe einer Leistungszelle.

Abb. 3-42 Steuer-Baugruppe

Abb. 3-43 Blockschaltbild der Steuer-Baugruppe einer Leistungszelle

	 Spannungsversorgung Überspannungserkennung (Ansprechwert: 1150 V) Übertemperaturerkennung für Leistungszelle Phasenausfallerkennung Logik zur Fehlerkodierung Ausfall Spannungsversorgung LWL-Fehler Empfangsdekodierung Bypass-Antrieb XS1 DC-Spannungseingang (max. 690 V AC) XS3 LWL-Schnittstelle TX: Signale senden (hellgrau) XS4 LWL-Schnittstelle RX: Signale empfangen (blaugrau) XS8 Öffnerkontakt
Steuersignale	Die Steuer-Baugruppe der Leistungszelle empfängt die optischen Steuersignale der Steuereinheit über die LWL-Schnittstelle (-XS4). Nach Empfang und Dekodierung des Steuersignals werden die Daten zur Steuerung:
	der IGBTs der Leistungszelle,
	des IGBT-Bypasses oder
	des Schütz-Bypasses
	weiter verarbeitet.
Fehlererkennung für Leistungszelle	Die Steuer-Baugruppe der Leistungszelle verfügt über eine Reihe von Schaltungen zur Erkennung von Fehlern in der Leistungszelle:
	Übertemperatur
	Phasenausfall
	 Überspannung im Gleichspannungszwischenkreis (Ansprechwert: 1150 V) Lichtwellenleiter-Fehler (LWL)
	Ausfall des Treiber-Platine,
	Austali des integrierten Zeilen-Schutz-Bypasses.
	Nachdem das Fehlersignal von der Steuer-Baugruppe kodiert wurde, wird es über einen Lichtwellenleiter (XS3) an die Steuereinheit zurückgesendet, um den aktuellen (Fehler-)Status der Leistungszelle zu melden.
Spannungsversorgung	Die Spannungsversorgung für die Steuer-Baugruppe wird dem Gleichspannungszwi- schenkreis (über -XS1) im Hauptstromkreis der Leistungszelle entnommen. Um die erfor- derliche lokale Steuerspannung bereitzustellen, wird die Mittelspannungsversorgung galvanisch isoliert und heruntertransformiert.
SPANNUNGSSTATUSANZEIGE DER LEISTUNGSZELLE	Die Spannungsstatusanzeige (grüne LED) an der Steuer-Baugruppe der Leistungszelle erlischt erst nach ca. 10 Minuten nachdem der FU von der MS-Netzversorgung getrennt wurde.

3.6.4

TREIBER-BAUGRUPPE DER LEISTUNGSZELLE

Abb. 3-44 Treiber-Baugruppe

Abb. 3-45 Blockschaltbild der Treiber-Baugruppe einer Leistungszelle

- 1 DRCM: Antriebs-Steuermodul für IGBT Q1
- 2 DRCM: Antriebs-Steuermodul für IGBT Q2
- **3** DRCM: Antriebs-Steuermodul für IGBT Q3
- 4 DRCM: Antriebs-Steuermodul für IGBT Q4
- 5 entkoppelte Spannungsversorgung für DRCM Q1
 - entkoppelte Spannungsversorgung für DRCM Q2
 - entkoppelte Spannungsversorgung für DRCM Q3
 - entkoppelte Spannungsversorgung für DRCM Q4

IGBT-Steuersignale für Den Wechselrichter

Die Treiber-Baugruppe der Leistungszelle erzeugt alle vier IGBT-Ansteuerungssignale. Für den Fall eines *IGBT-Ansteuerungsfehlers* wird eine entsprechende Meldung an die Steuer-Baugruppe der Leistungszelle zurückgesendet. Die Steuer-Baugruppe sendet dann eine Fehlermeldung an die Steuereinheit, welche die entsprechende Aktion einleitet.

Die Treiber-Baugruppe ist über ihren Klemmleistenblock -XS5 mit dem Klemmleistenblock -XS6 der Steuer-Baugruppe verbunden. Die spezifischen Signale sind wie folgt definiert:

IGBT-Steuerung:

6

7

8

- Steuersignal "L": steuert die beiden IGBTs (Q1, Q2) des linken Zweigs der H-Brückenschaltung,
- Steuersignal "R": steuert die beiden IGBTs (Q3, Q4) des rechten Zweigs der H-Brückenschaltung, und die Ansteuersignale von Q1, Q2 und Q3, Q4 verriegeln sich gegenseitig.

IGBT-Fehler:

• Sperrsignal "/ INHB": ist das IGBT-Sperrsignal

- Rückmeldesignal "/ DR": ist das IGBT-Fehlersignal, welches zum Schutz der Leistungszelle an ihre Steuer-Baugruppe zurückgeführt wird.
- *SPANNUNGSVERSORGUNG* Die Treiber-Baugruppe wird von der Steuer-Baugruppe mit Spannung versorgt. Die Spannungsversorgung "+15 V" ist in vier weitere, separate Spannungsversorgungen für die Ansteuerung der vier IGBTs aufgeteilt.

4 BEDIENUNG UND ANZEIGEN

4.1 EINLEITUNG

In den folgenden Abschnitten werden sämtliche Elemente die für die Bedienung, Anzeige und Einstellung des FU vorgesehen sind, dargestellt und erläutertet.

Abb. 4-1 Bedienungs- und Anzeigeelemente

6

Bedieneinheit (HMI) mit Touchscreen Betriebsanzeigen für die Schalterpositionen des Hauptschützes und des Trenn-/Erdungsschalters

- 3 Störungsanzeige für eine FU-Abschaltung durch Fehlermeldung
- 4 RESET-Tür-Taster für das Rücksetzen von Fehlermeldungen
- 5 NOT-AUS-Schalter für die manuelle Abschaltung des FU im Fehlerfall

Schlüsselschalter zur Freigabe des Kurbelzugangs für den Trenn-/Erdungsschalter

4.2 WARNSIGNALE

Der FU meldet Störungen von *geringer* Schwere als *Alarm-Ereignisse* die den FU-Betrieb jedoch *nicht* abschalten. Alarmmeldungen werden abhängig von der eingestellten *Betriebsart* wie folgt signalisiert:

- Lokale Bedienung (HMI): Für den Fall einer aktiven Alarmmeldung wird der rechte Teil der unteren Statusleiste des HMI-Displays mit gelber Hintergrundfarbe belegt und es erscheint der Klartext der Alarmmeldung,
- z. B. für das Alarm-Ereignis Alarm: Trafo-Übertemperatur:

Гизэ=Поуаину. 0,00, 2,00 5	spannung	sierung: Δφ	Einstellungen
		Alarm: Trafo-Übertemperat	ur

Abb. 4-2	Bedieneinheit (HM)): Anzeige für	⁻ Alarm-Ereignisse
----------	--------------------	----------------	-------------------------------

- *Fernbedienung (PLS):* Senden von Datenpunkten für Alarmmeldungen an den Leitrechner des Prozessleitsystems (PLS)
- *Fernbedienung (DI)*: Aktivierung von digitalen Ausgängen (AO) der I/O-Schnittstelleneinheit für aktive Alarme, die entweder über digitale Eingänge (DI) der I/O-Schnittstelleneinheit gemeldet werden oder von der FU-Steuereinheit generiert werden.

£	
È	
=	

KAPITELVERWEIS

Zur Ermittlung der Ursachen für aktive Alarm-Ereignisse und deren Behebung, s. Kapitel "7.1.1 Alarmmeldungen".

4.3 BEDIENUNGS- UND ANZEIGEELEMENTE

4.3.1 NOT-AUS-SCHALTER

Bei Fehlern oder in Situationen die nicht zu einer automatischen Abschaltung des FU führen, kann der *NOT-AUS-Schalter* an der Tür des Steuerfeldes betätigt (gedrückt) werden. Dadurch wird das vorgelagerte Hauptschaltelement (z. B. Hauptschütz oder Leistungsschalter) ausgeschaltet und die MS-Netzeinspeisung für den FU unterbrochen.

Abb. 4-3 NOT-AUS-Schalter zur Unterbrechung der MS-Netzeinspeisung

Um den NOT-AUS-Schalter zu betätigen, muss der rote Schaltknopf eingedrückt werden, bis dieser einrastet und mechanisch verriegelt. Für das Entriegeln (NOT-AUS-Freigabe) den roten Schaltknopf nach rechts drehen, bis ein Anschlag spürbar ist und anschließend loslassen. Der Schaltknopf springt nun in die Ausgangsposition zurück.

4.3.2 TRENN-/ERDUNGSSCHALTER: SCHLÜSSELSCHALTER, KURBELZUGANG UND SCHALTKURBEL

Der Trenn-/Erdungsschalter wird manuell mit Hilfe einer *Schaltkurbel* ein- und ausgeschaltet. Die Schaltkurbel wird an der Vorderseite des Steuer-/Eingangsfeldes in den *Kurbelzugang* eingeführt. Dies erfordert eine Freigabe der Verriegelung für den Kurbelzugang über den Schlüsselschalter: *Disconnector Operating Handle Access Shutter Release.*

Abb. 4-4 Bedienelemente für Trenn-/Erdungsschalter a) Schlüsselschalter zur Freigabe des Kurbelzugangs b) entriegelter Kurbelzugang c) Schaltkurbel

Die Schalterpositionen des Trenn-/Erdungsschalters werden durch die beiden Anzeigeleuchten *Disconnector Open (Earthed)* und *Disconnector Closed (Live)* angezeigt:

- Disconnector Open (Earthed): Trenn-/Erdungsschalter geöffnet (geerdet, Trennstrecke geöffnet)
- Disconnector Closed (Live):
- Trenn-/Erdungsschalter geschlossen (Trennstrecke geschlossen)

Abb. 4-5 Statusanzeigen für Trenn-/Erdungsschalterpositionen

4.3.3 HAUPTSCHALTELEMENT (MITTELSPANNUNG)

Die Einschaltung des Hauptschützes bzw. MS-Leistungsschalter erfolgt automatisch, wenn keine Fehlermeldungen aktiv sind.

Die Schalterpositionen des Hauptschaltelements werden durch die beiden Anzeigeleuchten *Main Contactor Open* und *Main Contactor Closed* angezeigt:

- *Main Contactor Open:* Hauptschaltelement geöffnet (MS ausgeschaltet)
 - Main Contactor Closed: Hauptschaltelement geschlossen (MS eingeschaltet)

.

Abb. 4-6 Statusanzeigen für Hauptschaltelement

4.3.4 START-/STOP-Schaltflächen des HMI

Das Ein- und Ausschalten des Motors kann in der Betriebsart *Lokale Bedienung (HMI)* über die Schaltflächen *START* und *STOP* manuell durchgeführt werden. Die Schaltflächen sind in dem Menü *FU-Monitor* angeordnet.

Testmodus: Die Schaltflächen starten und stoppen den simulierten Vorwärts-/Rückwärtslauf des virtuellen Motors ohne Aufschaltung der Mittelspannung.

Betriebsmodus:

- Schaltfläche START: Einschalten der Taktung der FU-Steuereinheit
- Schaltfläche STOP: Ausschalten der Taktung der FU-Steuereinheit

Abb. 4-7 Bedieneinheit (HMI): aktive START/STOP-Schaltflächen

Für die Betriebsarten *Fernbedienung (PLS)* und *Fernbedienung (DI)* sind die START/STOP-Schaltflächen außer Funktion und werden dunkelgrau hinterlegt dargestellt.

Abb. 4-8 Bedieneinheit (HMI): inaktive START/STOP-Schaltflächen

4.3.5 RESET-ELEMENTE

Das Rücksetzen von Fehlermeldungen wird abhängig von der eingestellten Betriebsart wie folgt realisiert:

Lokale Bedienung (HMI): Das Rücksetzen von Fehlermeldungen erfolgt über die Betätigung der Schaltfläche RESET des Touchscreens:

Abb. 4-9 Betriebsart = Bedieneinheit (HMI): Schaltfläche RESET

- Fernbedienung (PLS): Das Rücksetzen von Fehlermeldungen erfolgt über den Empfang des Befehls Fern-RESET vom Leitrechner des Prozessleitsystems (PLS).
 - *Fernbedienung (DI)*: Das Rücksetzen von Fehlermeldungen erfolgt über den digitalen Eingang *Externer RESET* (Anschluss -XS1:1,3).
 - Alle Betriebsarten: Parallel zu den Rücksetzmöglichkeiten der einzelnen FU-Betriebsarten kann das Rücksetzen von Fehlermeldungen, der FU-Steuereinheit sowie des NOT-AUS-Sicherheitsrelais über den RESET-Taster an der Tür des Steuerfeldes erfolgen:

Abb. 4-10 RESET-Tür-Taster an der Tür des Steuerfeldes

Der Schließer-Kontakt des *RESET-Tür-Tasters* wird hierfür auf den digitalen Eingang *RESET-Tür-Taster* (DI: -XS3:6) der I/O-Schnittstelleneinheit geführt.

4.3.6 STÖRUNGSANZEIGEN

Der FU meldet *Fehler-Ereignisse* die den FU-Betrieb abschalten. Fehlermeldungen werden abhängig von der eingestellten Betriebsart wie folgt signalisiert:

• Störungsanzeige *TRIP* an der *Tür des Steuerfeldes*:

Für den Fall einer aktiven Fehlermeldung und einer anschließenden Abschaltung (engl.: *trip*) des FU, wird die Anzeigeleuchte *TRIP* automatisch eingeschaltet (orange). Die Anzeigeleuchte wird ausgeschaltet, sobald die Fehlerursache beseitigt und die Fehlermeldung über eine Aktivierung der RESET-Funktion (z. B. *RESET-Tür-Taster*) zurückgesetzt ist.

Abb. 4-11 Störungsanzeige TRIP

HINWEIS

Ein aktives *Alarmereignis* wird durch die blinkende TRIP-Anzeige signalisiert, es erfolgt jedoch *keine* Abschaltung des FU!

Bedieneinheit (HMI): Für den Fall einer aktiven Fehlermeldung wird der linke Teil der unteren Statusleiste des Displays mit roter Hintergrundfarbe belegt und es erscheint der Klartext der Fehlermeldung, z. B. für das Fehler-Ereignis Fehler: Türalarm Zellenschrank:

Abb. 4-12 Bedieneinheit (HMI): Anzeige für Fehler-Ereignisse

- *Fernbedienung (PLS)*: Für den Fall einer *aktiven Fehlermeldung* sendet der FU die entsprechende Information an den Leitrechner des Prozessleitsystems.
- *Fernbedienung (DI)*: Aktivierung von digitalen Ausgängen (AO) der I/O-Schnittstelleneinheit für *aktive Fehlermeldungen*, die entweder über digitale Eingänge (DI) der I/O-Schnittstelleneinheit gemeldet werden oder von der FU-Steuereinheit generiert werden.

KAPITELVERWEIS

Zur Ermittlung der Ursachen f
ür aktive Fehler-Ereignisse und deren Behebung, s. Kapitel "7.1.2 Fehlermeldungen".

4.3.7 BEDIENEINHEIT (HMI)

Die Bedienelemente des Touchscreens sind als virtuelle Elemente wie z. B. Schaltflächen, Schieberegler, Auswahlfilter, oder Ziffern- und Tastaturblöcke realisiert.

Ð	
Ě	
=	

KAPITELVERWEIS

Für detaillierte Informationen zu den verschiedenen Anzeige- und Bedienelementen sowie ihren Funktionen und Einstellmöglichkeiten, s. Kapitel "4.5 Allgemeine Bedienhinweise" und "4.6 Hauptmenü (HMI)".

4.4 BETRIEBSARTEN UND ARBEITSMODI (FU-MODI)

Betriebsart	Zweck	Voraussetzungen		
Lokale Bedienung (HMI)	 Vor-Ort-Bedienung des FU entweder im <i>Be-</i> <i>triebsmodus</i> oder im <i>Testmodus</i> <i>Manueller START/STOP des</i> <i>Motors</i> 	Parametereinstellung: <i>Betriebsart = Lokale Bedienung</i> (HMI)		
Fernbedienung (PLS)	Fernbedienung des FU über ein Prozessleitsystem (PLS) als zentrale Betriebswarte	 Parametereinstellung: Betriebsart = Fernbedienung (PLS) Prozessleitsystem für die Kom- munikationsprotokolle: Modbus Profibus oder Profinet 		
Fernbedienung (DI)	 Fernbedienung des FU über einen externen Motorsteuerstand 	 Parametereinstellung: Betriebsart = Fernbedienung (DI) konventionelle Verdrahtung (Kupfer-Signalleitungen) des Motor-Steuerstandes mit dem FU (digitale Ein- und Ausgänge) 		
FU-Modus	Zweck	Voraussetzungen		
Test	Simulationsbetrieb des FU ohne aufgeschaltete Mittelspannung	 Mittelspannung muss aus- geschaltet sein und Parametereinstellung: <i>FU-Modus = Test</i> 		
Betrieb	 Betrieb des FU <i>mit</i> auf- geschalteter Mittelspan- nung 	Parametereinstellung: <i>FU-Modus = Betrieb</i>		

Tab. 4-1Betriebsarten und FU-Modus des MVH 2.0

4.5 ALLGEMEINE BEDIENHINWEISE

4.5.1 FU EIN- UND AUSSCHALTEN (BETRIEBSBEREITSCHAFT)

Um den FU in der realen Anwendung betreiben zu können (Starten/Stoppen und Steuern des Motors), muss der FU zunächst eingeschaltet, d.h. in die *Betriebsbereitschaft* versetzt werden.

Nach Beendigung des FU-Betriebes (STOP des Motors) kann der FU ausgeschaltet werden.

HTUNG

Nach dem Stoppen des Motors ist sicherzustellen, dass die Lüfterversorgung weiterhin zur Verfügung steht.

Die folgenden Anleitungen beschreiben die notwendigen Vorgehensweisen zum Ein- und Ausschalten der FU-Betriebsbereitschaft.

Betriebsbereitschaft des FU einschalten

ANLEITUNG - FU-Betriebsbereitschaft einschalten

Start	BENUTZEREBENE: Standard		
Schritt 1:	Sichtprüfung der FU-Anlage auf äußerliche Beschädigungen bzw. Auffällig- keiten		
Schritt 2:	Entriegeln der NOT-AUS-Kette (NOT-AUS-Schalter am FU-Steuerschrank sowie NOT-AUS-Schalter auf der Kundenseite entriegeln)		
Schritt 3:	Prüfen, ob sämtliche Türen des FU-Schranks geschlossen und verriegelt sind und ggf. korrigieren		
Schritt 4: Schritt 5:	 Leitungsschutzschalter im Steuerfeld einschalten für: FU-Steuersystem I/O-Schnittstelleneinheit (SPS) Bedieneinheit (HMI) Heizung Lüfter Das FU-Steuersystem führt die folgenden (Selbst-)Tests durch: Prüfung der internen Kommunikation des FU-Steuersystems (Steuer- einheit, I/O-Schnittstelleneinheit und Bedieneinheit (HMI)) Statusprüfung der Mittelspannung (MS Bereit) Statusprüfung der Leistungszellen Prüfen der Zellen-Bypass-Einheiten (abh. vom Leistungszellen-Typ) Prüfung auf aktive Störungen (Alarm- und/oder Fehlermeldungen) 		
Schritt 6:	Ggf. Störungsursache(n) ermitteln und beseitigen		
Schritt 7:	Sämtliche Parametereinstellungen auf Übereinstimmung mit der Anwen- dung prüfen und ggf. korrigieren		
Schritt 8:	 Parametereinstellung <i>FU-Modus</i> am HMI prüfen und ggf. umstellen auf: Parametereinstellung: <i>FU-Modus = Betrieb</i> 		
Schritt 9:	Kurbelzugang für die Schaltkurbel des Trenn-/Erdungsschalters elektrisch (Schlüsselschalter: <i>Disconnector Operating Handle Access Shutter Release</i>)		

und mechanisch entriegeln.

Schritt 10: Schaltkurbel für Trenn-/Erdungsschalter in den Kurbelzugang einführen und Trenn-/Erdungsschalter einschalten

- Schritt 11: Statusanzeigen für Schalterpositionen des Hauptschaltgerätes (*Main Contactor*) und des Trenn-/Erdungsschalters (*Disconnector*) prüfen und ggf. Schaltgerätepositionen korrigieren, so dass:
 - Disconnector Closed (Live) = EIN (Statusanzeige leuchtet rot)
 - Disconnector Open (Earthed) = AUS (Statusanzeige ist ausgeschaltet)
 - Main Contactor Closed = EIN (Statusanzeige ist ausgeschaltet)
 - *Main Contactor Open* = AUS (Statusanzeige leuchtet *grün*)
- Schritt 12: Schaltkurbel entnehmen und Kurbelzugang mechanisch und elektrisch verriegeln

Schritt 13: Prüfen der Statusanzeige *FU Bereit* im Display der Bedieneinheit:

- *FU Bereit* = EIN (virtuelle Status-LED leuchtet *grün*)
- ⇒ Der FU ist jetzt bereit, um je nach verwendeter Betriebsart den START-Befehl f
 ür den Motor abzusetzen und den FU-Betrieb aufzunehmen.

ENDE

Betriebsbereitschaft des	ANLEITUN	NG – FU-Betriebsbereitschaft ausschalten
FU AUSSCHALTEN	Start	BENUTZEREBENE: Standard
	Schritt 1:	Absetzen des STOP-Befehls
	Schritt 2:	Nach dem Herunterfahren des Motors den Stillstand des Motors überprüfen
	Schritt 3:	Verriegeln der NOT-AUS-Kette (Eindrücken des NOT-AUS-Schalters am FU- Steuerschrank
	Schritt 4:	Die Abschaltung der Mittelspannung wie folgt prüfen:
		• Die Statusanzeigen für das Hauptschaltelement (<i>Main Contactor</i>) müs- sen eindeutig die AUS-Position dieses Schaltgerätes anzeigen:
		• <i>Main Contactor Closed</i> = AUS (Statusanzeige ist ausgeschaltet)
		o <i>Main Contactor Open</i> = EIN (Statusanzeige leuchtet <i>grün</i>)
		 Kontrolle der Messwerte f ür die Eingangsspannung im Men ü FU- Monitor der Bedieneinheit (HMI))
	Schritt 5:	Kurbelzugang für Erdungstrenner-Schaltkurbel elektrisch (Schlüsselschal- ter: <i>Disconnector Operating Handle Access Shutter Release</i>) und mecha- nisch entriegeln
	Schritt 6:	Schaltkurbel für Trenn-/Erdungsschalter in den Kurbelzugang einführen und Trenn-/Erdungsschalter ausschalten
	Schritt 7:	AUS-Position des Trenn-/Erdungsschalters prüfen:
		 Die Statusanzeigen f ür den Trenn-/Erdungsschalter (<i>Disconnector</i>) m üssen eindeutig die AUS-Position dieses Schaltger ätes anzeigen:
		 Disconnector Closed (Live) = AUS (Statusanzeige ist ausge- schaltet)
		o <i>Disconnector Open (Earthed)</i> = EIN (Statusanzeige leuchtet <i>grün</i>)
		 Sichtprüfung der Schalterposition durch das Sichtfenster neben dem Kurbelzugang

Schritt 8: Kurbelzugang mechanisch und elektrisch verriegeln

Schritt 9: Leitungsschutzschalter im Steuerfeld ausschalten für:

- FU-Steuersystem
- I/O-Schnittstelleneinheit (SPS)
- Bedieneinheit (HMI)
- Heizung
- Lüfter

 \Rightarrow Die Betriebsbereitschaft des FU ist jetzt ausgeschaltet.

ENDE

4.5.2 STARTSEITE UND STANDBY-SEITE

Nach dem Einschalten der FU-Betriebsbereitschaft wird als *Startseite* das Menü *FU-Monitor* angezeigt. Wird das Touchscreen der Bedieneinheit für eine einstellbare Zeit nicht berührt, wechselt die Displayanzeige zur *Standby-Seite* (FU-Bereitschaftsanzeige), sofern diese aktiviert ist (parametrierbar). Ist die Standby-Seite deaktiviert, zeigt das Display immer die zuletzt aufgerufene Menüseite an.

STARTSEITE

Die *Startseite* zeigt das Hauptmenü *FU-Monitor*, in dem allgemeine Informationen zur Überwachung des FU Betriebs angezeigt werden. Die *Startseite* ist in sechs Bereiche unterteilt.

Abb. 4-13 HMI-Startseite: FU-Monitor

6

Hersteller-Logo

Statusanzeigen: Bereitschaftszustand Mittelspannung (MS), Bereitschaftszustand (Standby) des FU, Betriebszustand des FU und Störung

3 Systemdatum und -zeit

4 Hauptmenüleiste (1. Menüebene)

5 FU-Betriebsinformationen

Informationslaufleiste: Anzeige von Störmeldungen (Alarm- und Fehlermeldungen)

STATUSANZEIGEN • MS Bereit (Netz-Mittelspannungsanzeige):

Die Anzeige leuchtet (rot), wenn die Netz-Mittelspannung für den FU eingeschaltet ist.

- FU Bereit (FU-Bereitschaftsanzeige): Die Anzeige leuchtet grün, wenn das FU-System bereit ist.
 - Die Anzeige redentet *gran*, wenn das rie-System bereit is

FU Betrieb (FU-Betriebsanzeige): Die Anzeige leuchtet *grün*, wenn der FU in Betrieb ist.

• Störung (aktive Störmeldung):

o Die Anzeige leuchtet rot, wenn eine Fehlermeldung aktiv ist;

o die Anzeige blinkt *rot*, wenn eine Alarmmeldung aktiv ist.

SYSTEMDATUM UND -UHRZEIT Anzeige des aktuellen Datums und der Uhrzeit des FU-Steuersystems

HAUPTMENÜS Schaltflächen zur Auswahl der verschiedenen Hauptmenüs auf der 1. Menüebene

FU-BETRIEBSINFORMATIONEN Hauptanzeigebereich, einschließlich Anzeige der wichtigsten Parametereinstellungen, Messwerte, FU-Betriebsstatus, Start/Stop-Steuerung des FU, etc.

ANZEIGE VON Eine Störmeldung kann entweder eine aktive *Alarmmeldung* oder eine aktive *Fehlermel-STÖRMELDUNGEN dung* sein.

> Der linke Bereich der Informationslaufleiste wechselt bei einer aktiven *Fehlermeldung* auf eine *rote* Hintergrundfarbe. Die Information der Fehlermeldung wird als zyklisch umlaufender Text angezeigt.

> Der rechte Bereich der Informationslaufleiste wechselt bei einer aktiven *Alarmmeldung* auf eine *gelbe* Hintergrundfarbe. Die Information der Alarmmeldung wird als zyklisch umlaufender Text angezeigt.

STANDBY-SEITE

Die Displayanzeige des HMI wechselt nach einer einstellbaren Verzögerungszeit – in der das Touchscreen des HMI nicht betätigt wurde – zur *Bereitschaftsanzeige*, der sog. *Standby-Seite*.

Abb. 4-14 HMI-Display: Standby-Seite (ausgeschaltete Bereitschaftsanzeigen)

1 MS Bereit: Status – FU-Mittelspannung

- FU Bereit: Status FU-Bereitschaft
- 3 4

5

- FU Betrieb: Status FU-Betrieb
- Störung: Status Störungsanzeige für FU-Alarm- und/oder Fehlermeldungen
- Navigationstaste für Rücksprung auf die zuletzt aufgerufene Menüseite

Einstellungen für die Anzeige der Standby-Seite können in dem Menü: *Weitere Einstellungen/Benutzerumgebung/ Systemeinstellungen* vorgenommen werden.

BEDIENUNG UND ANZEIGEN

MS BEREIT

Bereitschaftsanzeige für die Mittelspannung

- Mittelspannung ist eingeschaltet: LED-Farbe = rot
- Mittelspannung ist ausgeschaltet: LED-Farbe = grau

Abb. 4-15 Mittelspannung eingeschaltet

FU Bereit

Abb. 4-16 FU ist betriebsbereit

FU Betrieb

Abb. 4-17 FU ist in Betrieb

Störung

Abb. 4-18 Aktive Störmeldung

FU ist betriebsbereit: LED-Farbe = grün FU ist nicht betriebsbereit: LED-Farbe = grau

Bereitschaftsanzeige des FU

Betriebsanzelge des FU (Motor wird am FU betrieben)

- FU ist in Betrieb: LED-Farbe = grün
- FU ist nicht in Betrieb: LED-Farbe = grau

Aktive Störmeldung

- > Mindestens eine Störmeldung ist aktiv:
 - aktive Fehlermeldung: LED-Farbe = rot
 - o aktive Alarmmeldung: LED-Farbe = rot, blinkend
- Keine aktive Störmeldung: LED-Farbe = grau

4.5.3 MENÜSTRUKTUR

Das Softwaremenü der FU-Steuereinheit gliedert sich in Menüebenen.

Die folgende Abbildung zeigt die Menüstruktur im Display der Bedieneinheit (HMI).

Menüebene 1	Menüebene 2	Menüebene 3
FU-Monitor		
Trendrekorder		
Parameter		
	Passworteingabe für Benutzerebene	
		Umrichterparameter 1
		Umrichterparameter 2
		Motorparameter 1
		Motorparameter 2
		Funktionsparameter 1
		Funktionsparameter 2
		Funktionsparameter 3
Ereignisrekorder		
	Einstellungen	
Leistungszellen: Status		-
Weitere Einstellungen		
	Weitere Systeme	
		Überwachung Wasserkühlung Trafoschrank
		Überwachung Kühlungssystem Zellenschrank
		Überwachung: Zellen-Bypass- Einheiten
		Temperaturüberwachung
	Vorladesystem	
	Erregersystem	
	Status Erregersystem	
	Erregung Optionenen Parametereinstellungen - Erregersystem	
	Betriebsstunden	
	Versionsinformation	
	Benutzerumgebung	
		Systemeinstellungen
		Passwort ändern
		Benutzer-Login

Tab. 4-2Menüstruktur der Bedieneinheit (HMI)

4.5.4 MENUNAVIGATION

Die Bedienung und Einstellung des FU erfolgt über die Bedienelemente des Touchscreen. *Menünavigation* bedeutet:

- das Aufrufen bzw. das Verlassen eines Haupt- oder Untermenüs (Navigation zwischen den Menüs auf der gleichen Menüebene oder unterschiedlichen Menüebenen)
- das Aufrufen von verschiedenen Menüseiten innerhalb eines Menüs (Navigation auf der gleichen Menüebene)

Der Touchscreen des FU-Steuersystems verwendet zur Menünavigation virtuelle Schaltflächen die als:

- Direktsprungtasten oder
- Navigationstasten

ausgeführt sind.

DIREKTSPRUNGTASTEN

Navigation zwischen Menüs sowie Menüebenen:

Direkter Menüaufruf durch Betätigen der gewünschten Menü-Schaltfläche.

Abb. 4-19 Menü-Direktaufruf

Abb. 4-20 Menü-geöffnet

Abb. 4-21 Menüebene-Rücksprung

Zurück zur vorherigen Seite

Abb. 4-22 Vorherige Menüseite-Rücksprung

Abb. 4-23 Menü schließen-Rücksprung

NAVIGATIONSTASTEN

Abb. 4-24 Zwischen Menüseiten blättern

- Schaltflächen von geöffneten Menüs sind durch eine blaue Hintergrundfarbe der Schaltfläche und dem Menünamen in weißer Schrift gekennzeichnet.
- Rücksprung auf die nächsthöhere Menüebene
- Rücksprung auf die zuvor aufgerufene Menüseite
- Rücksprung auf die nächsthöhere Menüebene durch Schließen eines (Unter-) Menüs

Zur Navigation zwischen Menüseiten der gleichen Menüebene:

• Blättern von Menüseiten mit Angabe der Menü-Seitenzahl/Gesamtseitenanzahl

4.5.5 BENUTZEREBENEN

Der MVH 2.0 verfügt über verschiedene Benutzerebenen, die sich hinsichtlich der Autorisierung für die Bedienung bzw. das Ändern von Parametereinstellungen unterscheiden.

Abb. 4-25 Benutzerebenen – Autorisierung für Parametereinstellungen

Nach dem Einschalten des FU-Steuersystems gilt die Benutzerebene:

1. Standard

Bedienpersonal mit allgemeinen Anwendungskenntnissen; ohne Passworteingabe.

Die zusätzlichen Benutzerebenen:

2. Bediener

Bedienpersonal mit erweiterten Anwendungskenntnissen

3. Ingenieur

Inbetriebnehmer und Bedienpersonal mit erweiterten Geräte- und Anwendungskenntnissen

4. Hersteller

AuCom MCS GmbH & Co.KG

sind passwortgeschützt und erlauben nur autorisiertem Personal weiterführende Änderungen von Parametereinstellungen vorzunehmen.

	HI
=	≻
—	

HINWEIS

- Über das Touchscreen sind lediglich die Benutzernamen Bediener, Ingenieur mit anschließender Passwortabfrage auswählbar. Die Verwendung der Bezeichnung Standard gilt für die Benutzerebene ohne Passworteingabe.
- Ist die Benutzerebene Hersteller erforderlich, sollte mit AuCom MCS GmbH & Co.KG Kontakt aufgenommen werden.

In der folgenden Tabelle sind die Zugriffsrechte der Benutzerebenen auf die verschiedenen Softwaremenüs dargestellt.

Benutzerebene	Menüebene 1	Menüebene 2	Menüebene 3
Standard	FU-Monitor		
Standard, Bediener,	Trendrekorder		
Standard	Parameter		
Bediener, Ingenieur		Passworteingabe für Benutzerebene	
Ingenieur			Umrichterparameter 1
Ingenieur			Umrichterparameter 2
Ingenieur			Motorparameter 1
Ingenieur			Motorparameter 2
Bediener, Ingenieur			Funktionsparameter 1
Bediener, Ingenieur			Funktionsparameter 2
Bediener, Ingenieur			Funktionsparameter 3
Standard	Ereignisrekorder		
Standard	Leistungszellen: Status		
Standard	Weitere Einstellungen		
Standard		Weitere Systeme	
Standard			Überwachung Wasserkühlung Trafoschrank
Standard			Überwachung Kühlungssystem Zellenschrank
Standard			Überwachung Zellen-Bypass- Einheiten
Standard			Temperaturüberwachung
Standard		Vorladesystem	
Standard, Bediener, Ingenieur		Erregersystem	
Standard		Status Erregersystem	
Ingenieur		Erregung Optionen	
Standard, Bediener, Ingenieur		Parametereinstellung Erregersystem	
Standard		Betriebsstunden	
Standard		Versionsinformation	
Standard		Benutzerumgebung	
Standard			Systemeinstellungen
Bediener, Ingenieur			Passwort ändern
Bediener, Ingenieur			Benutzer-Login

Tab. 4-3 HMI-Benutzerebenen – Zugriffsrechte auf Software-Menüs

Benutzerebene wechseln

Für einen Wechsel der Benutzerebene ist je nach Autorisierung des Benutzers eine entsprechende Passworteingabe erforderlich.

Benutzername	Autorisierung	Passwort (6 Zeichen)
Standard	sehr niedrig	ohne
Bediener	niedrig	123456
Ingenieur	hoch	300048
Hersteller	höchste	-

Tab. 4-4 Benutzerebenen

Ein Wechsel der Benutzerebene kann entweder über:

- das Menü *Weitere Einstellungen\Benutzerumgebung\Benutzer-Login* des Hauptmenüs *Weitere Einstellungen* oder
- das Hauptmenü Parameter

erfolgen.

\equiv

HINWEIS

Erfolgt innerhalb von 10 Minuten nach der Aktivierung einer passwortgeschützten Benutzerebene keine Bedienung des Touchscreens, wird die aktuelle Benutzerebene verlassen und die Benutzerebene *Standard* aktiviert.

Die folgende Anleitung zeigt die Vorgehensweise für einen Wechsel der Benutzerebene über das Menü *Benutzerumgebung* am Beispiel der Benutzerebene für den *Ingenieur*.

ANLEITUNG - Aktivierung der Benutzerebene Ingenieur (Beispiel)

Start

BENUTZEREBENE: Ingenieur

AUFRUF DES HAUPTMENÜS "WEITERE EINSTELLUNGEN" Schritt 1: Auf Schaltfläche Weitere Einstellungen klicken.

- > Hauptmenü Weitere Einstellungen wird geöffnet.
- > Gleichzeitig öffnet sich das Menü Benutzerumgebung.

AuCom	MS Bereit	FU Bereit	FU Betrie	eb 🔵	Störung	20:05:51 09 / 03 / 2023
Weitere Systeme	Vorladesy stem	Erregersy stem	Betriebsstunden	Versions information	Benutzer- umgebung	FU-Monitor
Benutzeru	mgebung		Status E	Benutzerebene: S	standard	Trend- rekorder
	Konfigurationsbe	reich	Passwort	ch		Parameter
Sy stemeinstellungen		andern Benutzer-Login	Ereignis- rekorder			
			Ausloggen			Leistungs- zellen:Status
						Weitere Einstellungen

Abb. 4-26 Menü "Benutzerumgebung"

EINGABEMASKE "FU PARAMETEREINSTELLUNGEN DES PASSWORTS" AUFRUFEN Schritt 2: Im Menü Systemeinstellungen die Schaltfläche Benutzer-Login anklicken.

- Die Eingabemaske Passworteingabe für Benutzerebene mit der Aufforderung zur Eingabe des aktuell gültigen Passwortes für den Benutzer Ingenieur wird angezeigt.
- > Der Auswahlfilter zeigt *Bediener* als den zuletzt ausgewählten Benutzer:

Passworteigabe für Benutzerebene
Benutzername Bediener Y
Eingabe Passwort
1 2 3
4 5 6
7 8 9
0 <- schließen

Abb. 4-27 Eingabemaske zur Passworteingabe

Benutzer auswählen

Schritt 3: Auswahlfilter durch Anklicken öffnen.

> Der geöffnete Auswahlfilter zeigt die verfügbaren Benutzernamen:

Passwort	eingabe für Be	enutzerebene	
**	Benutzername Eingabe Passwort	Bediener V Ingenieur Bediener	
1	2	3	
4	5	6	
7	8	9	
	0	<-	Schließen

Abb. 4-28 Geöffneter Auswahlfilter

Benutzer "Ingenieur" Auswählen Schritt 4: Den Benutzernamen *Ingenieur* anklicken.

> Der Auswahlfilter zeigt *Ingenieur* als den aktuell ausgewählten Benutzer:

Passworte	eingabe für	Benutzerebene	
**	Benutzernam	e Ingenieur 🗸	
1	Eingabe Passwort	000000	
1	2	3	
4	5	6	
7	8	9	
	0	<	Schließen

Abb. 4-29 Aktueller Benutzername: Ingenieur

PASSWORT EINGEBEN

- Schritt 5: Gültiges Passwort für die Benutzerebene *Ingenieur* über den angezeigten Ziffernblock eingeben.
- Die Eingabe der einzelnen Ziffern des Passwortes wird jeweils durch die farbig ausgefüllten Kreisanzeigen über dem Ziffernblock angezeigt.

Passwort	eingabe für l	Benutzerebene	
	Benutzernam	e Ingenieur 🗸	
	Eingabe Passwort	000000	
1	2	3	
4	5	6	
7	8	9	
	0	\leftarrow	Schließen

Abb. 4-30 Eingegebene Passwortziffern

- > Nach Eingabe der letzten Passwortziffer wird die Eingabemaske geschlossen.
- Der Status der aktuellen Benutzerebene wird im Menü Benutzerumgebung angezeigt:

Abb. 4-31 Status Benutzerebene: Ingenieur

HINWEIS

Die Eingabemaske *Passworteingabe für Benutzerebene* kann auch direkt über das Hauptmenü *Parameter* geöffnet werden.

Nach der Passworteingabe und dem Schließen der Eingabemaske wird dann das Menüfenster Umrichterparameter 1 automatisch geöffnet.

ENDE

4.5.6 ÄNDERUNGEN VON PARAMETEREINSTELLUNGEN (ALLGEMEIN)

Für eine sichere Funktion und Bedienung des FU muss das Steuersystem an die Peripherie der verschiedenen Anwendungen angepasst werden. Diese Anpassung erfolgt im Softwaremenü des FU-Steuersystems über entsprechende Parameter bzw. Parametergruppen.

Die verschiedenen Parameter im MVH 2.0 können auf unterschiedliche Weise eingestellt werden, z. B. als:

- Parametrierung über Auswahlfilter (Einstelloption),
- Parametrierung über Ziffernblock oder Tastenblock (Einstellwert) oder
- Parametrierung über Direktschaltflächen (Umschaltung der Einstellung).

Im Folgenden werden die drei Arten der Parametrierung anhand von exemplarischen Anleitungen erläutert.

PARAMETRIERUNG ÜBER AUSWAHLFILTER (EINSTELLOPTION)

ANLEITUNG (exemplarisch) – Einstellung des Parameters *Start Modus*

Start

BENUTZEREBENE: Ingenieur

HINWEIS

Die geänderte Parametereinstellung ist noch nicht in der Steuereinheit gespeichert und hat daher noch keine Auswirkungen auf die Funktionen des FU!

Das Speichern der Änderung einer Parametereinstellung erfordert das Herunterladen aller Parameter von der Bedieneinheit (HMI) zur Steuereinheit.

BENUTZEREBENE "INGENIEUR" AKTIVIEREN

	5	
	フノ	
	\sim	
_ 1		

KAPITELVERWEIS

- Die Aktivierung der Benutzerebene Ingenieur erfolgt gemäß der in Kapitel "4.5.5 Benutzerebenen" beschriebenen Anleitung.
- Schritt 1: Durchführen der in Kapitel "4.5.5 Benutzerebenen" beschriebenen Handlungsschritte zur Aktivierung der Benutzerebene *Ingenieur*.

Aufrufen des Menüs "Parameter Einstellung" Schritt 2: Schaltfläche des Hauptmenüs Parameter Einstellung anklicken.

Das Display zeigt den Parameter START Modus mit seiner aktuellen Einstellung Normalstart auf der ersten von sieben Menüseiten:

AuCom MS Bereit	FU Ber	reit FU Betrieb	, (Störung		20:05:51
HETCH CENTER, UNEQUILIETE		<u> </u>			_	
Umrichterparameter 1						FU-Monitor
FU-Typ ASYNC Motor U/f	~	Start- frequenz 0.20	Hz	Hochlauframpe 30.0) s	
FU-Modus Test	$\langle \cdot \rangle$	Maximale Frequenz 50.00	Hz	Bremsrampe 50.0) s	Trend- rekorder
START-Modus Normalstart	Ý	Minimale Frequenz 0.00	Hz	Max. zu. Netz- ausfalldauer 0	ms	Parameter
STOP-Modus Herunterfahren Ende	~	Eingangsnenn- spannung 6000	V	Totzeit- kompensation	1 P s	
Master/Slave- Betrieb Deaktiviert	~	Ausgangsnenn- spannung 6000	V	Zellen: Bypass-Fkt.0		Ereignis- rekorder
Master/Slav e- Modus Master	~	Ausgangsnenn- strom 6000	А	Anzahl: 5 Zellen/Phase 5		Leistungs-
Freq. Suche 0.40 pu Master-Slave 0.5	Hz	FU-Eingang: Pri. Stromwandler- Nennstrom	:5	i Drehmoment Verstärkungs- 0 faktor	%	zellen:Status
Parameter Parameter Herunterladen Hochladen) (Vorherige	e Seit	te 1/7 Nächste	Seite	Weitere Einstellungen

Abb. 4-32 Umrichter Parameter1 – Parameter "START-Modus"

ÖFFNEN DES AUSWAHLFILTERS FÜR PARAMETER "START -MODUS"

- Schritt 3: Auswahlfilter durch Anklicken öffnen.
- > Der geöffnete Auswahlfilter zeigt die verfügbaren Einstelloptionen.

1	AuCom	MS Bereit	FU Ber	eit 🔵 F	U Betriet		Störur	ng		20:05:51 09 / 03 / 2023
	Umric	hterparameter 1		Start-	[FU-Monitor
	FU-Typ	ASYNC Motor U/f	¥	frequenz	0.20	Hz	Hochlrampe	30.0	s	
	FU-Modus	Test	~	Maximale Frequenz	50.00	Hz	Bremsrampe	50.0	s	Trend- rekorder
	START-Modus	Normalstart	~	Minimale Frequenz	0.00	Hz	Max. zu. Netz- ausfalldauer	0	ms	Parameter
	STOP-Modus	Normalstart		Eingangsnenn- spannung	6000	v	Totzeit- kompensation	1	۳s	
	Master/Slave- Betrieb	Parametererkennung 1		Ausgangsnenn- spannung	6000	V	Zellen: Bypass-Fkt.	0		Ereignis- rekorder
	Master/Slave- Modus	Parametererkennung 2		Ausgangsnenn- strom	6000	A	Anzahl: Zellen/Phase	5		Leistungs-
	Freq. Suche	Drehmoment-Start	0.0	FU-Eingang: P Stromwandle	ri. r- 200	:5	Drehmoment Verstärkungs-	0	%	zellen:Status
	Parameter Herunterladen	Parameter Hochladen] [Nennstro	m ^ı Vorherig	e Seit	e <mark>1/7</mark> Nä	chste Se	ite	Weitere Einstellungen

Abb. 4-33 Geöffneter Auswahlfilter

EINSTELLOPTION AUSWÄHLEN

- Schritt 4: Anklicken der gewünschten Einstelloption, z. B. Schnellstart.
- > Der Auswahlfilter zeigt *Schnellstart* als die aktuell ausgewählte Einstelloption:

Abb. 4-34 Aktuelle Einstelloption: Schnellstart

Schaltfläche zum Speichern von Parametereinstellungen

Änderung der Parametereinstellung speichern Schritt 5: Schaltfläche Parameter Herunterladen anklicken.

Für ein erfolgreiches Speichern zeigt das Display für eine Dauer von ca. 1,5 s die folgende Meldung:

Abb. 4-35 Erfolgreiches Abspeichern der geänderten Parametereinstellung

BENUTZEREBENE "INGENIEUR" VERLASSEN Schritt 6: In dem Menü *Benutzerumgebung* die Schaltfläche *Ausloggen* anklicken.

> Es ist wieder die Benutzerebene *Standard* aktiv.

Ende

PARAMETRIERUNG ÜBER ZIFFERNBLOCK (EINSTELLWERT)

ANLEITUNG (exemplarisch) - Einstellen des Systemdatums und der Systemuhrzeit

Start

BENUTZEREBENE: (Standard)

Systemeinstellungen											
Einstellungen:	Jahr	Monat	Tag	Stunde	Minute	Sekunde					
Systemzeit	0	0	0	0	0	0	ОК				

Abb. 4-36 Parametergruppe der Systemzeit

PARAMETER "JAHR" AUSWÄHLEN

- Schritt 1: Weißes Zahlenfeld des Parameters Jahr zur Einstellung der aktuellen Jahreszahl anklicken.
- > Parametriermaske Arten der Zahlen wird angezeigt.
- > Der Einstellbereich für diesen Parameter ist durch die Angaben Min: 2000 als kleinstem Einstellwert und Max: 2050 als größtem Einstellwert definiert und wird in der zweiten Zeile der Parametriermaske angezeigt.
- Abb. 4-37 Parametriermaske

EINGABE DER JAHRESZAHL

Arten der Zahlen:												
Min: 2000 Max: 2050												
2023												
7	8	9	А	В	ج-							
4	5	6	С	D	CE							
1	2	3	E	F	Del							
-	0		ESC	C	к							

Abb. 4-38 Ziffernblock: Eingabe der Jahreszahl

EINGEGEBENE JAHRESZAHL BESTÄTIGEN

Abb. 4-39 Anzeigefeld "Jahr"

EINGABE DER WEITEREN Systemzeit-Parameter Schritt 4: Analog zur Einstellung der Jahreszahl die Einstellungen für: Monat, Tag, Stunde, Minute und Sekunde vornehmen.

Min: 2000 Max: 2050 0 В А 4 С D CE F Del ESC

"Arten der Zahlen"

- Schritt 2: Die entsprechenden Ziffern für die gewünschte Jahreszahl nacheinander im Ziffernblock als Parametriermaske anklicken.
- > Die eingegebene Jahreszahl erscheint in der weißen Zeile der Parametriermaske.

Schritt 3: Schaltfläche OK in der Parametriermaske anklicken.

> Aktuelle Jahreszahl erscheint im Anzeigefeld Jahr.

BEDIENUNG UND ANZEIGEN

Die neue Systemzeit wird in der weißen Zeile der Parametriermaske angezeigt:

Systemeinstellun	igen						×
Einstellungen:	Jahr	Monat	Tag	Stunde	Minute	Sekunde	
Systemzeit	2023	4	28	11	23	35	ОК

Die aktualisierte Systemzeit wird in der oberen, rechten Ecke des Displays angezeigt.

Abb. 4-40 Systemzeit – vollständige Einstellung

Schritt 5: Schaltfläche OK im Anzeigefeld anklicken.

SPEICHERN DER VOLLSTÄNDIGEN SYSTEMZEIT

11:23:35 28 / 04 / 2023

Abb. 4-41 Aktualisierte Systemzeit

ENDE

PARAMETRIERUNG ÜBER DIREKTSCHALTFLÄCHEN (UMSCHALTUNG DER EINSTELLUNG)

ANLEITUNG (exemplarisch) - Standby-Seite aktivieren/deaktivieren

Start	Benutzerebene: (Standard)

Μενΰ "Systemeinstellungen" AUFRUFEN

Standby -Seite Einstellungen:	
$\bullet \bullet \bullet \bullet$	aktivieren
Verzöge- rungszeit	100 s

Abb. 4-42 Standby-Seite - aktuelle Einstellunaen

STANDBY-SEITE AKTIVIEREN

Abb. 4-43 Standby-Seite aktiviert

- In dem Menü Benutzerumgebung die Schaltfläche für das Menü Systemein-Schritt 1: stellungen anklicken
- > Die grau hinterlegte Schaltfläche aktivieren zeigt an, dass die Standby-Seite deaktiviert ist und durch Anklicken aktiviert werden kann.
- Das Feld links neben der Schaltfläche Schließen symbolisiert die Standby-Seite.

Schritt 2: Schaltfläche aktivieren anklicken

- > Die grün hinterlegte Schaltfläche deaktivieren zeigt an, dass die Standby-Seite aktiviert ist und durch Anklicken deaktiviert werden kann.
- > Der Parameter Verzögerungszeit definiert die Zeit nach der das Display automatisch die Standby-Seite anzeigt. Der Zähler für die Verzögerungszeit startet sofort nach der letzten Berührung des Touchscreen. Der Einstellbereich für die Verzögerungszeit beträgt 120 ... 1600 s.

 Die Parametrierung der Verzögerungszeit erfolgt analog zu der exemplarischen Anleitung im Kapitel "4.5.6 Änderungen von Parametereinstellungen (allgemein)"

STANDBY-SEITE DEAKTIVIEREN

Schritt 3: Schaltfläche Einschalten anklicken

Die grau hinterlegte Schaltfläche aktivieren zeigt an, dass die Standby-Seite wieder deaktiviert ist (und durch Anklicken erneut aktiviert werden kann).

Abb. 4-44 Standby-Seite deaktiviert

4.5.7 AUSWAHL DER MENÜSPRACHE

Die Menüsprache im Display des Touchscreen (HMI) kann für die folgenden Landessprachen eingestellt werden:

- Deutsch •
- Englisch .
- Russisch
- Französisch
- Spanisch
- Chinesisch

Die Umschaltung einer Menüsprache erfordert keine Passworteingabe und kann auf der Benutzerebene Standard (auch während des FU-Betriebs) durchgeführt werden. Die Menüsprache wird über einen Auswahlfilter im Konfigurationsbereich des Menüs "Weitere Einstellungen/ Benutzerumgebung/Systemeinstellungen" eingestellt.

			2			
AuCom	MS Bereit	FU Bereit	رء 🔘	Betrieb	Störung	20:05:51 09 / 03 / 2023
Weitere Systeme	Vorladesy stem	Erregersystem	Betriebsstur d	len Version: informati	s Benutzer- on umgebung	FU-Monitor
Systemeins	stellungen				<u> </u>	Trend- rekorder
Systemz	eit 0 0	Tag Stu	nde Minute	Sekunde 0	ОК	Parameter
Standby-Se Einstellunge	ite - n:	Auswahl Menüsprache	DEUTSCH	~		Ereignis- rekorder
Verzöge-	aktivieren		Englisch Russisch	∧Mes	FU-Monitor: sgrößenauswahl	Leistungs- zellen:Status
rungszeit			Französisch	<u>~</u>		Weitere Einstellungen
			ß			

Abb. 4-45 Menü "Systemeinstellungen" – Auswahl der HMI-Menüsprache

(1
(2

Menü: Systemeinstellungen

Ausgewählte Menüsprache

Auswahlfilter für verfügbare Menüsprachen

Sobald die Zielsprache im Auswahlfilter angeklickt ist, erscheinen sämtliche Menütexte in dieser Sprache.

1	
	<u> </u>
	=

HINWEIS

Die Einstellung der Menüsprache wirkt ausschließlich auf das HMI und erfordert keine Parameterspeicherung in der Steuereinheit.

4.6 HAUPTMENÜ (HMI)

4.6.1 MENÜ: FU-MONITOR

Die Startseite des Softwaremenüs der Bedieneinheit (HMI) zeigt das Menü *FU-Monitor*. Der *FU-Monitor* zeigt den Systemstatus, die wichtigsten Parametereinstellungen und die aktuellen Betriebsmesswerte des FU sowie die Schaltflächen zur Bedienung des FU.

AuCom	MS Bereit		FU Ber	eit 🌔	FU Beti	ieb		Störung		20:05:51 09 / 03 / 20
System Status	MS nicht b	ereit				Temp überw	eratur- achung	ст	20,4 °C	FU-Monito
FU-Modus: Test	nalstart	Sollfrequenz eingeben	20,0	00 Hz						Trend- rekorder
STOP-Modus: Freil	auf-STOP	Betriebs- frequenz	0,00	Hz	Betrieb	is- 0	U/m in			
Vorgabe Sollfreq.: Lokal	le Eingabe	Eingangs- spannung	0	V	Ausgang spannur	s- 0	v	\square		Paramete
Betriebsart: Lokal	le Bedienung	Eingangs-	0,0	Α	, Ausgang Stro	s- m 0,0	Α	- 		
Master/Slave- Modus: Maste	er	f/n Sollwert	0,0	%	f/n Istwe	ert 0,0	%		START	rekorder
FU-Typ: ASY Drehzahlregelung: 5,00;	/NC Motor U/f 3,00 s	Eingangs- leistung	0	kW	Ausgang leistu	s- ng 0	kW	R	STOP	Leistungs zellen:Stat
Strom-Regelung: 1,00;	10,00 ms	Eingangs- leistungsfaktor	0,00		Ausgang leistungsfakt	s- or 0,00				
Fluss-Regelung: 5,00;	2,00 s	System- spannung	0,00		Synchror sierung: /	ni- Δφ 0,0	o	\$	RESET	Weitere Einstellung
		,						_11		

Abb. 4-46 Hauptmenü – FU-Monitor

- Anzeige von Meldungen zum FU-Systemstatus
- Schaltfläche zum Aufruf von Menüs, z. B. Temperaturüberwachung
- Anzeige der Temperatur im Leistungszellenschrank
- Manuelle Bedienung: START/STOP-Steuerung und Rücksetzen (RESET) von Fehlermeldungen
- Manuelle Eingabe der Startfrequenz und Anzeige von Betriebsmesswerten

1

2

3

4

Anzeige von FU-Einstellungen

SYSTEM STATUS: MELDUNGEN Der Informationsbereich Systemstatus zeigt die aktuelle Meldung über den Zustand des FU-Systems.

OPTIONALER AUFRUF VON So MENÜS F

Sofern parametriert bzw. programmiert, können weitere Menüs direkt von der Startseite *FU-Monitor* aufgerufen werden. Dazu erscheint jeweils eine entsprechende Schaltfläche in der zweiten Menüzeile des *FU-Monitors*.

Schaltfläche Temperaturüberwachung Die Schaltfläche Temperaturanzeige wird nur für die Parametereinstellung *Direktaufruf über Startseite = Ja* im Parametermenü *Einstellungen* des Menüs *Temperaturüberwa-chung* angezeigt.

Das Betätigen der Schaltfläche *Temperaturanzeige* öffnet das Menü Temperaturüberwachung und zeigt auf der Menüseite *Messwerte* die aktuellen Temperaturwerte der vorhandenen Temperatursensoren des FU. MANUELLE FU-BEDIENUNGFür die Betriebsart Lokale Bedienung (HMI) kann der Motor über das Touchscreen des
HMI manuell gestartet und gestoppt werden. Die Funktionsschaltflächen START und
STOP stehen dazu sowohl für den FU-Modus Betrieb als auch Test zur Verfügung.

Mit der Funktionsschaltfläche *RESET* können Fehlermeldungen manuell zurückgesetzt werden. Voraussetzung für ein erfolgreiches Rücksetzen ist die vorherige Beseitigung der Fehlerursache.

SOLLFREQUENZ EINGEBEN Mit der Eingabemaske *Sollfrequenz eingeben* wird die Frequenz vorgegeben, mit welcher der Motor betrieben werden soll. Die Eingabe erfolgt über einen Ziffernblock, welcher nach Anklicken des weiß hinterlegten Zahlenfeldes angezeigt wird.

Rampen angefahren.

HINWEIS

Für den Motor-*Vorwärtslauf* gilt ein Einstellbereich von 0 bis 80 Hz.
 Für den Motor-*Rückwärtslauf* gilt ein Einstellbereich von 0 bis -80 Hz.

	Arten der Zahlen:												
Mi	Min: -80 Max: 80												
0	0.00												
	7	8	9	А	В	<-							
	4	5	6	С	D	CE							
	1	2	3	E	F	Del							
	-	0		ESC	0	к							

Abb. 4-47 Eingabemaske für die Motor-Sollfrequenz

Betriebsmesswerte

Während des FU-Betriebs zeigt das *FU-Monitor* die folgenden *momentanen* Betriebsmesswerte:

Messgröße	Beschreibung		
Betriebsfrequenz [Hz]	Frequenz mit der der Motor betrieben wird.		
Betriebsdrehzahl [U/min]	Motordrehzahl		
Eingangsspannung [V]	Spannung am FU-Eingang (MS)		
Ausgangsspannung [V]	Spannung am FU-Ausgang (MS)		
Eingangsstrom [A]	Strom im FU-Eingang (MS) (Stromwandler zum Sternpunkt der Primärseite des Multi-Level-Transformators)		
Ausgangsstrom [A]	Strom im FU-Ausgang (MS)		
f/n Sollwert (Al 1) [%]	Aktueller f/n Sollwert des Analogeingangs Al 1		
f/n Istwert (AI 2) [%]	Aktueller f/n Istwert des Analogeingangs Al 2		
Eingangsleistung [kW]	Wirkleistung am FU-Eingang (MS)		
Ausgangsleistung [kW]	Wirkleistung am FU-Ausgang (MS)		
Eingangsleistungsfaktor	Leistungsfaktor am FU-Eingang (MS)		
Ausgangsleistungsfaktor	Leistungsfaktor am FU-Ausgang (MS)		
Systemspannung [pu]	 Mittelwert der Gleichspannungszwischenkreispannung der ersten Leistungszellen pro Phase (A1, B1, C1) bezogen auf den Nennwert der Gleichspannungszwischenkreispannung der Leistungszellen: Ubc[pu] = [(Ubc,A1 + Ubc,B1 + Ubc,C1) / 3] / Ubc,Nenn Messwertanzeige im Per-Unit-System 		
Synchronisierung: Δφ	Phasenwinkeldifferenz zwischen den Phasenspannun- gen am FU-Eingang und FU-Ausgang Anzeige des Messwertes nur während des Synchroni- siervorgangs		

Tab. 4-5 FU-Monitor: Betriebsmesswerte

Währand das ELL Patrichs zeigt das ELL Manitar die folgenden memontanen Patrichs

Für die Sollfrequenz = OHz startet der Motor nicht!

Nach Bestätigen der eingegebenen Sollfrequenz durch einen Klick auf das Feld *OK* schließt der Zifferblock automatisch und die neue Sollfrequenz wird mit den eingestellten

ANZEIGE DER WICHTIGSTEN FU-PARAMETEREINSTELLUNGEN Die Einstellungen der folgenden Parameter geben einen Überblick über die wichtigsten Systemeinstellungen des FU:

Parametername	Beschreibung
FU-Modus	Arbeitsmodus des FU: Betrieb oder Test
START-Modus	Modus in dem der Motor gestartet wird
STOP-Modus	Modus in dem der Motor gestoppt wird
Vorgabe Sollfreq.	Quelle für die Vorgabe des Frequenzsollwertes
Betriebsart	Betriebsart des FU: Modus für die Bedienung des FU
Master/Slave Modus	(Master oder Slave)-Funktion des FU im FU-Doppel- oder Multi-Frequenzumrichterbetrieb
FU-Typ	FU-Steuerung/Regelung für den entsprechenden Motortyp
Drehzahlregelung	PI-Regler: Verstärkungsfaktor und Integrationszeit [s]
Strom-Regelung	PI-Regler: Verstärkungsfaktor und Integrationszeit [ms]
Fluss-Regelung	PI-Regler: Verstärkungsfaktor und Integrationszeit [s]

Tab. 4-6FU-Monitor: Übersicht der wichtigsten Parametereinstellungen

KAPITELVERWEIS

Die vorstehenden Parameter und ihre Einstelloptionen sind in dem Kapitel "4.6.3 Menü: Parameter" detailliert beschrieben.

4.6.2 MENU: TRENDREKORDER

Trendkurven werden verwendet, um zeitliche Verläufe von Messgrößen des FU anzuzeigen. Die Trendkurven können:

- in Echtzeit oder
- als Kurvenhistorie

im Display angezeigt werden.

Für die Strom- und Spannungsmessgrößen werden die Effektivwerte dargestellt.

ECHTZEIT-KURVEN

Bei aktivierter Schaltfläche Aktivieren zeigt das Display die Kurvenverläufe der Messgrö-Ben Betriebsfrequenz, des Ausgangsstrom, der Ausgangsspannung des FU in Echtzeit an. Dazu werden die Messwerte zyklisch (100 ms) abgetastet und die Kurvenverläufe aktualisiert.

Abb. 4-48 Hautmenü – Trendrekorder: Echtzeitkurven

- Schiebemarkierung zur Schnappschuss-Anzeige der Messwerte
- Info-Fenster zum Anzeigebereich sowie den aufgezeichneten Messwerten

Trendkurve: Motorfrequenz

1

2

ğ

Trendkurve: Spannung am FU-Ausgang

- 345678 Schaltfläche STOP zum Anhalten des Zeitverlaufs
 - Schaltfläche Aktivieren zum Fortführen des Zeitverlaufs
 - Parametermenü zur Einstellung der Trendkurven-Anzeige
 - Schieberegler für Zoom entlang der Y-Achse
 - Parametriermaske zur Festlegung des zeitlichen Anzeigebereiches (x-Achse)
- 10 Schaltflächen zum Vor- und Zurückspulen der Datenaufzeichnung (x-Achse)
 - Schieberegler für Zoom entlang der Y-Achse

Abb. 4-49 Zeitfenster des Anzeigebereichs skalieren (x-Achse)

Startzeitpunkt für das angezeigte Zeitfenster Endzeitpunkt für das angezeigte Zeitfenster

Zeitfenster zur Anzeige der Trendkurven

Schiebemarkierung und

INFO-FENSTER

Durch Klicken auf die Diagrammfläche erscheint eine senkrechte, schwarze Linie als *Schiebemarkierung* auf der Zeitachse (x-Achse). Gleichzeitig öffnet sich das *Info-Fenster*, welches die folgenden Informationen erhält:

- die Skalierung der Zeitachse (Wertebereich),
- der mit der Schiebemarkierung ausgewählte Zeitpunkt (Aktueller Wert),
- die Skalierung der Messbereiche (Wertebereich) und
- die für den angewählten Zeitpunkt gültigen Messwerte (*Aktueller Wert*) zur *Betriebsfrequenz* (Frequenz am FU-Ausgang), zum *Ausgangsstrom* und zur *Ausgangsspannung* des FU

TRENDKURVEN Auf der Diagrammfläche werden die zeitlichen Verlaufskurven der Messgrößen am FU-Ausgang als *Trendkurven* angezeigt.

S	Schaltflächen					
STOP Aktualisieren						
BZW.						
STOP Aktualisieren						

Durch Anklicken der entsprechenden Schaltfläche kann die Anzeige der Echtzeitkurven gestoppt oder fortgeführt werden. Die aktive Schaltfläche ist blau hinterlegt.

- Aktivierung der Schaltfläche *Aktualisieren* Die angezeigten Trendkurven sind *Echtzeitkurven* und verlaufen mit fortschreitender Zeit von links nach rechts. Der aktuelle Zeitpunkt liegt dabei am rechten Ende der Zeitachse. In dieser Darstellung lassen sich z. B. die momentanen Verlaufskurven während der verschiedenen Betriebsphasen in Echtzeit beobachten.
- Aktivierung der Schaltfläche STOP
 Der zeitliche Verlauf der Trendkurven wird angehalten. Die Verlaufskurven auf der
 Diagrammfläche werden "eingefroren" und stellen somit eine Kurvenhistorie dar.
 Unter Verwendung der Schiebbemarkierung können jetzt die einzelnen Messwerte
 zu beliebigen Zeitpunkten der Trendkurven abgelesen werden.

BEDIENUNG UND ANZEIGEN

Schaltfläche

Einstellungen

Das Betätigen dieser Schaltfläche öffnet das Parametermenü *Einstellung.* Dieses Menü ist in drei Bereiche unterteilt:

Abb. 4-50 Parametermenü "Einstellungen"

Parametermenü *Einstellung*: Festlegung der Start- und Endzeit für die Aufzeichnung der Kurvenhistorie

X-Achse Einstellungen: Skalierung des angezeigten Zeitfensters

Y-Achse Einstellungen: Skalierung der angezeigten Trendkurven

Schaltfläche zum Zurücksetzen der Min./Max.-Parameter auf die Werkseinstellungen

PARAMETERÜBERSICHT

Parametername	Einstellwert	Einheit	Einstellbereich		
	(Voreinstellung)				
	Bereich Einstellung				
Startzeit	2016/01/01 12:00:00	1111/1	MM/TT hh/mm/ss		
Endzeit	2112/01/01 12:00:00	1111/1	MM/TT hh/mm/ss		
В	ereich X-Achse Einstellu	ngen			
(Länge des Zeitbereiches)	1	Min	1 1e+10 Min.		
В	ereich <i>Y-Achse Einstellu</i>	ngen			
Betriebsfrequenz					
Min.	-50/(-60)*	Hz	-1e+10 50/(60)*		
Max.	50/(60)*	Hz	-50/(60)* 1e+10		
Ausgangsstrom					
Min.	-100	А	- 1 e+ 1 0 100		
Max.	100	А	-100 1e+10		
Ausgangsspannung					
Min.	-6000	V	-1e+10 6000		
Max.	6000	V	-6000 1e+10		

*abhängig von der MS-Netzfrequenz (s. Parameter Maximale Frequenz)

Tab. 4-7 Trendrekorder - Parameterübersicht

Parameterbeschreibung

PARAMETERMENÜ

"EINSTELLUNG"

Parameter:

Startzeit

Dieser Parameter definiert den Startzeitpunkt der Datenaufzeichnung für die Funktion Kurvenhistorie Exportieren.

Editierung über Tastaturblock

KAPITELVERWEIS Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen \geq

Abb. 4-51 Parametriermaske zur "Startzeit"

x c v b n m Del

von Parametereinstellungen (allgemein)".

Parameter:

Endzeit

Dieser Parameter definiert den Endzeitpunkt der Datenaufzeichnung für die Funktion Kurvenhistorie Exportieren.

Editierung über Tastaturblock

"Endzeit"

- **KAPITELVERWEIS** \geq Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen
- von Parametereinstellungen (allgemein)".

X-ACHSE EINSTELLUNGEN

Parameter:

(Anzeigebereich)

Dieser Parameter definiert die Länge des Anzeigebereichs [Min] für die Trendkurven auf der Zeitachse.

Einstellung über Zifferblock

Abb. 4-53 Parametriermaske (Zeitbereich)

R B B B	
\equiv	

KAPITELVERWEIS

Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen \geq von Parametereinstellungen (allgemein)".

\square	HINWEIS
\equiv	1e+10
	= 10 ¹⁰

(e-Schreibweise) (Potenz-Schreibweise)

(Dezimal-Schreibweise) = 10 000 000 000

Y-ACHSE EINSTELLUNGEN

Parameter:

(Betriebsfrequenz:) Min. (und) Max.

Die Parameter Min. und Max. definieren jeweils den Bereich für die angezeigte Werteskala für:

- die Betriebsfrequenz, •
- den Ausgangsstrom und .
- die Ausgangsspannung

auf der Y-Achse.

Einstellungen über Ziffernblöcke

Abb. 4-54 Parametriermaske zur Betriebsfrequenz "Min."

KAPITELVERWEIS

Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen
von Parametereinstellungen (allgemein)".

	HINWEIS
\equiv	-1e+10
	= -10 ¹⁰
	- 10.000

(e-Schreibweise) (Potenz-Schreibweise) = -10 000 000 000 (Dezimal-Schreibweise)

Abb. 4-55 Parametriermaske zur Betriebsfrequenz "Max."

Parameter:

(Ausgangsstrom:) Min. (und) Max.

Die Parameter Min. und Max. definieren den Bereich für die angezeigte Werteskala des FU-Ausgangsstroms auf der Y-Achse.

Einstellungen über Ziffernblöcke

Min: -1	e+10			Ν	/lax: 77	
-77						
7	8	9	А	В	<-	
4	5	6	С	D	CE	
1	2	3	E	F	Del	
- 0 . ESC OK						

Abb. 4-56 Parametriermaske zum Ausgangsstrom "Min."

KAPITELVERWEIS

≻ Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen von Parametereinstellungen (allgemein)".

Ganzzahl [dezimal]						
Min: 7	7			Max	:1e+10	
77						
7	8	9	А	В	<-	
4	5	6	С	D	CE	
1	2	3	E	F	Del	
- 0 . ESC OK						

Abb. 4-57 Parametriermaske zum Ausgangsstrom "Max."

Parameter:

(Ausgangsspannung:) Min. (und) Max.

Die Parameter Min. und Max. definieren den Bereich für die angezeigte Werteskala der FU-Ausgangsspannung auf der Y-Achse.

von Parametereinstellungen (allgemein)".

Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen

Einstellungen über Ziffernblöcke

۶

KAPITELVERWEIS

Abb. 4-58 Parametriermaske zur

Ganzzahl [dezimal]						
Min: -6000 Max: 1e+10						
6000						
7	8	9	А	В	ج.	
4	5	6	С	D	CE	
1	2	3	E	F	Del	
- 0 . ESC OK						

Abb. 4-59 Parametriermaske zur Ausgangsspng. "Max."

Schaltfläche:

Das Betätigen dieser Schaltfläche öffnet das Parametermenü Den Umfang der Zeit stellen zur Festlegung des Beginns des Anzeigebereiches auf der Zeitachse. Hierfür stehen drei verschiedene Konfigurations-Modi zur Verfügung:

- Die letzte Zeit •
- Festgelegte Zeit
- Angegebene Zeit •

Die folgenden Parameter definieren jeweils den Zeitpunkt, ab dem die Trendkurven angezeigt werden sollen.

Min: -1e+10 Max: 6000							
-6000							
7	8	9	А	В	<-		
4	5	6	С	D	CE		
1	2	3	E	F	Del		
-	0		ESC	0	к		

Ausgangsspng. "Min."

Den Umfang der Zeit stellen	×
Die letzte Zeit	OK Abbrechen
☐ Festgelegte Zeit Dieser Tag ▼	
Punkt der Zeitabtrennung 0 Stunde	
Angegebene Zeit	
2023 Jahr 5 Monat 11 Tag	
12 Stunde 38 Minute 7 Sekunde	

Abb. 4-60 Trendrekorder - Konfiguration des Start-Zeitpunktes für den Anzeigezeitraum

•: aktiviert

O: deaktiviert

Parameterübersicht

Parametername	Einstellwert (Voreinstellung)	Einstellbereich bzw. Einstelloptionen
Die letzte Zeit	0	○/●
(Zahlenwert)	10	0 596523 [Einheit]
(Einheit-Filterauswahl)	Stunde	Sekunde / Minute / Stunde / Tag / Monat / Jahr
Festgelegte Zeit	0	○/●
(Filterauswahl)	Dieser Tag	Dieser Tag / Dieser Monat / Gestern / Letzter Monat
Punkt der Zeittrennung	0	0 23 (Stunde)
Angegebene Zeit	۲	○/●
Jahr	(aktuelles Jahr)	1970 2036
Monat	(aktueller Monat)	1 12
Tag	(aktueller Tag)	1 31
Stunde	(aktuelle Stunde	0 23
Minute	(aktuelle Minute)	0 59
Sekunde	(aktuelle Sekunde)	0 59

Tab. 4-8 Konfiguration des Start-Zeitpunktes für den Anzeigezeitraum - Parameterübersicht

Mit den folgenden Schaltflächen können die *angezeigten Trendkurven* auf der Zeitachse jeweils um einen definierten Zeitabschnitt nach links oder rechts *verschoben* werden.

Die einzelnen Schaltflächen unterscheiden sich hinsichtlich der Verschiebungsrichtung sowie um den anteiligen Betrag des eingestellten Anzeigebereiches der Zeitachse, um die die Trendkurven verschoben werden.

Symbol	Verschiebungsrichtung	Betrag des Zeitabschnittes pro Klick
	nach links	Der volle eingestellte Anzeigebereiches der Zeitachse
Ŧ	nach links	1/2 des eingestellten Anzeigebereiches der Zeitachse
•	nach links	1/5 des eingestellten Anzeigebereiches der Zeitachse
	nach rechts	1/5 des eingestellten Anzeigebereiches der Zeitachse
••	nach rechts	1/2 des eingestellten Anzeigebereiches der Zeitachse
	nach rechts	Der volle eingestellte Anzeigebereiches der Zeitachse

Tab. 4-9 Schaltflächen zur Verschiebung der Trendkurven

Schieberegler für Zoom:

Die Auflösung der angezeigten Trendkurven kann bzgl. der Effektivwerte (Y-Achse) sowie des angezeigten Zeitfensters (X-Achse) skaliert werden (Zoom).

y ♣ ↓ ↓ ↓ ↓ ↓

Skalierung der Effektivwerte (Y-Achse)

Bei Bewegung der Schieberegler auf der Y-Achse wird die Skalierung der Zeitachse (X-Achse) immer beibehalten.

Oberer Schieberegler – Verschiebung nach unten

Der Minimalwert (Nulllinie) sowie der Maximalwert der Trendkurven verschieben sich um unterschiedliche Beträge nach *oben.* Der Betrag der Verschiebung der Maximalwerte der Trendkurven ist dabei *größer* als der Betrag der Minimalwerte.

• Oberer Schieberegler – Verschiebung nach oben

Der Minimalwert (Nulllinie) sowie der Maximalwert der Trendkurven verschieben sich um unterschiedliche Beträge nach *unten*. Der Betrag der Verschiebung der Maximalwerte der Trendkurven ist dabei *größer* als der Betrag der Minimalwerte.

• Unter Schieberegler – Verschiebung nach oben

Der Minimalwert (Nulllinie) sowie der Maximalwert der Trendkurven verschieben sich um unterschiedliche Beträge nach *unten*. Der Betrag der Verschiebung der Maximalwerte der Trendkurven ist dabei *kleiner* als der Betrag der Minimalwerte.

• Unter Schieberegler – Verschiebung nach unten

Der Minimalwert (Nulllinie) sowie der Maximalwert der Trendkurven verschieben sich um unterschiedliche Beträge nach *unten*. Der Betrag der Verschiebung der Maximalwerte der Trendkurven ist dabei *kleiner* als der Betrag der Minimalwerte.

Die folgende Abbildung veranschaulicht die Skalierung der Effektivwerte für die Fälle:

- Oberer Schieberegler Verschiebung nach unten und
- Unter Schieberegler Verschiebung nach oben

a) Wertebereich Aktueller Wert Einheit Inhalt 03-09 20:06 03-09 20:05 03-09 20:06 03-09 20:06 03-09 20:06 03-09 20:06 1 b) Wertebereich Aktueller Wert Einheit Inhalt 03-09 20:06 03-09 20:05 03-09 20:06 03-09 20:06 03-09 20:06 03-09 20:06 c) Inhalt Wertebereich Aktueller Wert Einheit 03-09 20:06 03-09 20:05 03-09 20:06 03-09 20:06 03-09 20:06 03-09 20:06

Abb. 4-61 Zoom der Effektivwerte (Y-Achse) a) Ausgangsposition der Schieberegler b) oberer Schieberegler nach unten c) untere Schieberegler nach oben

Minimalwert einer Trendkurve (Nulllinie) Maximalwert einer Trendkurve

Skalierung der Zeitachse (X-Achse)

Bei Bewegung der Schieberegler auf der X-Achse wird die Skalierung der Effektivwerte (Y-Achse) immer beibehalten.

• Linker Schieberegler – Verschiebung nach links

Bei Max. Verschiebung (1/5 des gesamten Zeitfensters) nach *links* \Rightarrow Vergrößerung des Zeitfensters um 24 s.

- Rechter Schieberegler Verschiebung nach rechts
 Bei Max. Verschiebung (1/5 des gesamten Zeitfensters) nach rechts ⇒ Vergrößerung des Zeitfensters um 24 s.
- Linker Schieberegler Verschiebung nach rechts

Bei Verschiebung um 1/5 des gesamten Zeitfensters nach *rechts* \Rightarrow Verkleinerung des Zeitfensters um 24 s.

• Rechter Schieberegler – Verschiebung nach links

Bei Verschiebung um 1/5 des gesamten Zeitfensters nach *links* \Rightarrow Vergrößerung des Zeitfensters um 24 s.

Die folgende Abbildung veranschaulicht die Skalierung der Effektivwerte für die Fälle:

- Linker Schieberegler Verschiebung um 1/5 2 des gesamten Zeitfensters 1
 nach links und
- Rechter Schieberegler Verschiebung um 1/5 3 des gesamten Zeitfensters 1
 nach rechts

Der Wertebereich zeigt jeweils die Breite des aktuellen Zeitfensters an.

Abb. 4-62 Zoom des Zeitfensters (X-Achse)
a) Ausgangsposition der Schieberegler
b) Rechter Schieberegler: Verschiebung nach rechts
c) Linker Schieberegler: Verschiebung nach links

KURVENHISTORIE

Bei aktivierter Schaltfläche *STOP* zeigt das Display die Kurvenverläufe der FU-Ausgangsmessgrößen bis zum Zeitpunkt der Betätigung der Schaltfläche *STOP*.

Abb. 4-63 Trendkurven: Kurvenhistorie

Schaltfläche zum Speichern der Kurvenhistorie Schaltfläche zum Löschen der Kurvenhistorie

SCHALTFLÄCHE: Kurv enhistorie exportieren Die Kurvenhistorie der Trendkurven kann in Form der Datei *history_data.csv* auf ein externes Speichermedium gespeichert werden. In der csv-Datei werden sämtliche Datenpunkte der drei Trendkurven gespeichert. Diese Datei lässt sich sowohl mit einem Text-Editor als auch mit dem SW-Programm MS EXCEL öffnen.

	`
=	
=	

HINWEIS

Die Zeitpunkte für den Beginn und das Ende der Datenspeicherung kann im Parametermenü über die Parameter *Startzeit* und *Endzeit* festgelegt werden. Die maximale Aufzeichnungsdauer beträgt jedoch 30 Tage, gerechnet von der aktuellen Systemzeit des FU.

Schaltfläche:

Kurv enhistorie löschen

Das Betätigen dieser	Schaltfläche lösch	t sämtliche k	Kurvenverläufe	aus dem	Trendrekor
der.					

HINWEIS

Die Schaltfläche *Kurvenhistorie löschen* steht nur der aktivierten Benutzerebene *Ingenieur* zur Verfügung.

ANLEITUNG – Kurvenhistorie exportieren

CTADT	
SIARI	

BENUTZEREBENE: Engineer

Externes Speichermedium Anschlieben

Schritt 1: USB-A Speicherstick (max. Speichergröße: 4MB) in die USB1-Schnittstelle des HMI einstecken.

Abb. 4-64 USB-A Schnittstelle für externes Speichermedium

Parametermenü "Einstellungen" aufrufen

Startzeit	2016/01/01 12:00:00
Endzeit	2112/01/01 12:00:00

Startzeit und Endzeit

Abb. 4-65 Parameter:

Schritt 2: In dem Menü *Kurve* die Schaltfläche *Einstellungen* betätigen.

- Das Parametermenü Einstellungen wird geöffnet und die Parameter Startzeit und Endzeit werden angezeigt.
- Mit den Parametern Startzeit und Endzeit kann jetzt der Zeitraum f
 ür die Datenaufzeichnung definiert werden.

ZEITRAUM FÜR DIE	Schritt 3: Parameter Startzeit und Endzeit einstellen.
DATENAUFZEICHNUNG DEFINIEREN	 KAPITELVERWEIS Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen von Parametereinstellungen (allgemein)".
Parametermenü "Einstellungen" schlieben	 Schritt 4: In dem Parametermenü <i>Einstellungen</i> auf das Symbol klicken. Im Display erscheint erneut das Menü <i>Kurve</i>.
DATENEXPORT EINLEITEN	Schritt 5: Die Schaltfläche <i>Kurvenhistorie exportieren</i> betätigen.
	Nach ca. 10 s zeigt das Display für eine erfolgreiche Datenspeicherung die folgende Meldung:
	Datenexport erfolgreich !
	Abb. 4-66 Erfolgreiches Abspeichern der Kurvenhistorie
Vorgang Abschlieben	Schritt 6: Die Schaltfläche OK anklicken.
	Die Meldung Datenexport erfolgreich! wird geschlossen.

ENDE

4.6.3 MENU: PARAMETER

Das Menü *Parameter* enthält alle Parameter die zur Einstellung des FU für die spezifische Anwendung erforderlich sind. Die einstellbaren Parameter sind in drei Bereiche unterteilt:

- Parameter des FU
- Parameter des Motors in der Anwendung
- Parameter zu Softwarefunktionen der Steuereinheit

	HIN
\equiv	Erfo
—	\triangleright

HINWEIS

Erforderliche Benutzerebenen zur Parametrierung

- Parameteränderungen können grundsätzlich nur über die Benutzerebenen Bediener und Ingenieur oder höher durchgeführt werden. Sofern eine Parametereinstellung in der gewählten Benutzerebene nicht zur Verfügung steht, ist das Eingabefeld für den Einstellwert bzw. der Auswahlfilter für die Einstelloption grau hinterlegt.
 - Die Einstellung des gültigen Passwortes für die erforderliche Benutzerebene erfolgt analog zu der exemplarischen Anleitung im Kapitel "4.5.5 Benutzerebenen".

Es stehen insgesamt sieben Menüseiten für die Parametereinstellungen zur Verfügung:

- 1/7: Umrichterparameter 1
- 2/7: Umrichterparameter 2
- 3/7: Motorparameter 1
- 4/7: Motorparameter 2
- 5/7: Funktionsparameter 1
- 6/7: Funktionsparameter 2
- 7/7: Funktionsparameter 3

0	2		3					
AUCOM MS Bereit	FU Ber	eit 🔵 FU	Betrieb		Störu	ng		20:05:51 09 / 03 / 2023
Umrichterparameter 1								FU-Monitor
FU-Typ ASYNC Motor U/f	~	Start- frequenz	0.20 ⊦	Iz	Hochlauframpe	30.0	s	
FU-Modus Test	~	Maximale Frequenz	50.00 ⊦	Iz	Bremsrampe	50.0	s	Trend- rekorder
START-Modus Normalstart	~	Minimale Frequenz	0.00 ⊦	Iz	Max. zu. Netz- ausfalldauer	0	ms	Parameter
STOP-Modus Herunterfahren Ende	~	Eingangsnenn- spannung	6000		Totzeit- kompensation	1	₽s	T drameter
Master/Slav e- Betrieb	~	Ausgangsnenn- spannung	6000	/	Zellen: Bypass-Fkt.	0		Ereignis- rekorder
Master/Slav e- Modus Master	~	Ausgangsnenn- strom	6000	•	Anzahl: Zellen/Phase	5		Leistungs-
Freq. Suche 0.40 pu Master-Slave 0.4	5 Hz	FU-Eingang: Pri. Stromwandler- Nennstrom	200	:5	Drehmoment Verstärkungs- faktor	0	%	zelle:Status
Parameter Parameter Herunterladen Hochladen		,	Vorherige S	Seite	e 1/7 Ná	ichste Se	ite	Weitere Einstellungen
6 5					4			

Abb. 4-67 Hauptmenü, Seite 1/7: Parameter – Umrichter Parameter 1

- Auswahlfilter für die Einstelloptionen
- **2** 3 Eingabefeld für den Einstellwert
- Ă Aktuelle Menüseite/Gesamtseitenanzahl des Menüs
- 5 Schaltfläche Parameter Hochladen

Schaltfläche Parameter Herunterladen

AuCom	M/ Anzeige	Bere	eit 🔘	Betrieb	Fe	hler	20:05:51 09 / 03 / 2023
Funl	ktionsparameter 3						Monitor
Umschaltfrei- gabe: FU<->Netz	Deaktiviert	~	Aktiver Motor Parametersatz	Motor-Paramet	ersatz 1	~	Fenster
Kühlmethode	Luftgekühlt	~	PLS-Kommunik.: Protokolltyp	Modbus		~	Kurv e
Manuelle Lüftersteuerung	STOP	~	Baudrate	9600		~	Parameter
MS-Zuschaltung bei Alarm möglich	Deaktiviert	~	FU-Adresse	1		~	Einstellung
Offene Schranktür : Störungsauswahl	Alarm	~					Ereignis- speicher
Meldung: Filter reinigen	Ignorieren	~					Leistungs- zelle Status
Synchr.Umschltg. Motor-Transfer	Transfer zum Netz	~					
Rücksetzen aut	f Werkseinstellungen		v	orherige Seite	7/7	Vächste Seite	Einstellungen
							_
	1						

Abb. 4-68 Hauptmenü, Seite 7/7: Parameter – Funktionsparameter 3

Schaltfläche Rücksetzen auf Werkseinstellungen

Für das Speichern und Rücksetzen von Parametereinstellungen gibt es drei Vorgänge:

- Parameter Herunterladen,
- Parameter Hochladen und
- Rücksetzen auf Werkseinstellungen.

Schaltfläche: PARAMETER HERUNTERLADEN Alle aktuellen Parametereinstellungen des Menüs Parameter Einstellung werden von der Bedieneinheit (HMI) zur SPS und anschließend auf die Steuereinheit übertragen (⇒ heruntergeladen).

Schaltfläche: PARAMETER HOCHLADEN Alle aktuellen Parametereinstellungen des Menüs Parameter Einstellung werden von der Steuereinheit zur SPS und anschließend auf die Bedieneinheit (HMI) übertragen (⇒ hochgeladen).

Schaltfläche: RÜCKSETZEN AUF WERKSEINSTELLUNGEN Alle Parameter des Menüs Parameter Einstellung werden auf die Werkseinstellungen zurückgesetzt.

Г	
L	
L	
L	

HINWEIS Die Funktionsschaltfläche Rücksetzen auf Werkseinstellungen ist nur wirksam für die Parametereinstellung Rücksetzen auf Werkseinstellungen = Aktiviert.

UMRICHTERPARAMETER 1

4	NuCom	MS Bereit	FU Ber	eit 🔵 F	J Betrieb		Störu	ng			20:05:51 09 / 03 / 2023	
	Umric	hterparameter 1									FU-Monitor	
	FU-Typ	ASYNC Motor U/f	\sim	Start- frequenz	0.20	Hz	Hochlauframpe	30.0	s	ł		
	FU-Modus	Test	~	Maximale Frequenz	50.00	Hz	Bremsrampe	50.0	s		Trend- rekorder	
	START-Modus	Normalstart	~	Minimale Frequenz	0.00	Hz	Max. zul. FRT-Dauer	0	ms	ĺ	Parameter	
	STOP-Modus	Bremsrampe	~	Eingangsnenn- spannung	6000	V	Totzeit- kompensation	1	₽s			
	Master/Slav e- Betrieb	Deaktiviert	~	Ausgangsnenn- spannung	6000	V	Zellen: Bypass-Fkt.	0			Ereignis- rekorder	
	Master/Slave- Modus	Master	~	Ausgangsnenn- strom	6000	A	Anzahl: Zellen/Phase	5		Î	Leistungs-	
	Freq. Suche Strom 0.4	0 pu Master-Slave Freq. Differenz	0.5 Hz	FU-Eingang: Pr Stromwandler Nennstror	i. 200	:5	Drehmoment Verstärkungs- faktor	0	%	-	zelle:Status	
	Parameter Herunterladen	Parameter Hochladen			Vorherige	Seit	e 1/7 Nä	ichste Se	eite		Weitere Einstellungen	

Abb. 4-69 Hauptmenü: Parameter – Umrichterparameter 1

Parameterübersicht

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstellbereich bzw. Einstelloptionen					
FU-Anwendungen								
FU-Typ	ASYNC Motor U/f	-	ASYNC Motor U/f / ASYNC VC mit Sensor / SYNC Motor U/f / SYNC VC mit Sensor / ASYNC VC ohne Sensor / SYNC VC ohne Sensor					
FU-Arbeitsmodi								
FU-Modus	Test	-	Test / Betrieb					
Motor-Start/Stop								
START-Modus	Normalstart	_	Normalstart / Schnellstart / Parametererkennung 1 / Parametererkennung 2 /					
STOP-Modus	Freilauf-STOP	-	Bremsrampe / Freilauf-STOP					
Master/Slave-Betrieb								
Master/Slave-Betrieb	Deaktiviert		Deaktiviert / Aktiviert					
Master/Slave-Modus	Master	-	Master / Slave					
Master-Slave Freq. Differenz	0,5	Hz	0,0 1,0 Hz					
Schnellstart								
Freq. Such-Strom	0,40	ри	0,10 1,00 [pu]					
Motor-Start								

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstellbereich bzw. Einstelloptionen				
Startfrequenz	0,2	Hz	0,0 5,0 Hz				
Frequenzbereich für FU-Betrieb							
Maximale Frequenz	50,00	Hz	00,00 80,00 Hz				
Minimale Frequenz	00,00	Hz	00,00 80,00 Hz				
FU-Nenndaten							
Eingangsnenn- spannung	6000	V	380 15000 V				
Ausgangsnenn- spannung	6000	V	380 15000∨				
Ausgangsnennstrom	77,0	А	30,0 3000,0 A				
FU-Eingang: Pri. Stromwandler- Nennstrom	100:5	-	100:5 2000:5				
Motor-Start/Stop							
Hochlauframpe	30,0	S	5,0 6000,0 s				
Bremsrampe	50,0	S	5,0 6000,0 s				
	MS-Netzausfall						
Max. zul. FRT-Dauer	0	ms	0 2000 ms				
FU-Systemeinstellung							
Totzeitkompensation	1	μs	0 20µs				
Leistungszellen							
Zellen: Bypass-Fkt.	0	-	0 2				
Anzahl: Zellen/Phase	5	-	2 9				
Motor-Start							
Drehmoment Verstärkungsfaktor	0	%	1 15 %				

Tab. 4-10 Umrichterparameter 1 – Parameterübersicht

Parameterbeschreibung

FU-ANWENDUNGEN

Parameter:

FU-Typ

Dieser Parameter definiert die *FU-Steuerung/Regelung* für den entsprechenden Motortyp.

- Für Standardanwendungen, wie z. B. Lüfter- oder Pumpenlasten, sollte die Einstellung *ASYNC Motor U/f* gewählt werden.
- Für Anwendungen mit höheren, dynamischen Anforderungen sollte die *Vektorregelung ohne Sensor* gewählt werden.
- Für Anwendungen, die eine präzise Drehzahlregelung erfordern, sollte die *Vektorregelung mit Drehzahlrückführung* gewählt werden.
- Für Anwendungen mit einem Master- und mehreren Slave-Antrieben sollte die Einstellung *ASYNC Motor U/f* oder *ASYNC VC ohne Sensor* gewählt werden.

Einstelloptionen:

ASYNC Motor U/f

Asynchronmotor mit erweiterter U/f-Regelung
BEDIENUNG UND ANZEIGEN

AUCOM MOTOR CONTROL SPECIALISTS

ASYNC VC mit Sensor
SYNC Motor U/f
SYNC VC mit Sensor
ASYNC VC ohne Sensor
SYNC VC ohne Sensor

Asynchronmotor mit Vektorregelung mit Drehzahlgeber (Drehzahlrückführung)

Synchronmotor mit erweiterter U/f-Regelung

Synchronmotor mit Vektorregelung mit Rotorpositionsgeber (Rückführung Polradwinkel)

Asynchronmotor mit Vektorregelung ohne Drehzahlgeber

Synchronmotor mit Vektorregelung: ohne Rotorpositionsgeber

KAPITELVERWEIS

Weiterführende Informationen zu Einstellungen der Erregung, s. Kapitel "4.6.6 Menü: Weitere Einstellungen".

FU-Arbeitsmodi

Test

Betrieb

Parameter:

FU-Modus

Dieser Parameter definiert den Modus für den Test oder den Betrieb.

Verwendung für Inbetriebnahme und Service sowie Werksprüfungen ohne angelegte Mittelspannung.

Verwendung für Betrieb mit angelegter Mittelspannung

Motor-Start/Stop

Parameter:

START-Modus

Dieser Parameter definiert den Modus für den Motorstart.

Einstelloptionen:

Normalstart

Der FU beschleunigt von der Startfrequenz auf die Motorsollfrequenz entsprechend der Hochlauframpe.

Bei *Asynchronmotoren* arbeitet der FU beim Start mit Spannungsanhebung und schaltet in den U/f-Modus oberhalb von 10Hz. Verwenden Sie den Parameter *Drehmoment Verstärkungsfaktor*, um den FU-Ausgangsstrom (Startdrehmoment) einzustellen.

Bei *Synchronmotoren* arbeitet der Umrichter beim Start im Modus mit eingeprägtem FU-Ausgangsstrom und schaltet in den U/f-Modus oberhalb von 5 Hz. Verwenden Sie den Parameter *Drehmoment Verstärkungsfaktor*, um den FU-Ausgangsstrom (Startdrehmoment) einzustellen.

Schnellstart

Für Anwendungen, bei denen der FU auf einen noch drehenden Motor aufgeschaltet wird. Der FU erfasst die Drehzahl des Motors und startet dann entsprechend der erkannten Frequenz des sich bereits drehenden Motors.

Dadurch kann der Motor ohne Stromspitzen anlaufen. Der *Schnellstart* eignet sich für den Wiederanlauf von Motoren nach Netzausfällen und Starten von Lasten mit großer Trägheit, wie z. B. Ventilatoren.

Um die Einstelloption *Schnellstart* zu verwenden, wählen Sie die Parametereinstellung *STOP-Modus = Freilauf-STOP* und stellen Sie die Parameter *Freq. Suche Strom* und *Frequenzsuche Modus* wie erforderlich ein.

Der relative Stator-Widerstand Rs[%] ist ein bezogener Wert und wird von dem FU nach der folgenden Formel bestimmt:

$$R_{s}[\%] = 100 \% * \sqrt{3} * R_{s}[\Omega] * \frac{\text{Motornennstrom [A]}}{\text{Motornennspannung [V]}}$$

- $\underline{mit}: \quad \mathsf{Rs}[\Omega]: \quad \textit{Absoluter} \quad \mathsf{Wert} \quad \mathsf{des} \quad \mathsf{Strang-Statorwiderstandes} \quad (\mathsf{Quotient} \quad \mathsf{von} \\ gemessener \quad \mathsf{Phasenspannung} \quad \mathsf{und} \; \mathsf{gemessenem} \; \mathsf{Phasenstrom}) \\$
 - Rs[%] *Relativer* Wert des Strang-Statorwiderstandes, bezogen auf den Statorwiderstand, der aus den Nenndaten des Motors ermittelt wird

Die vorstehende Formel gilt für die Parametereinstellungen *Parameterkennung 1* sowie *Parameterkennung 2.*

HINWEIS

Bei der *Parametererkennung 1* und *Parametererkennung 2* handelt es sich um Sub-Programme, die nur einmalig bei der Inbetriebnahme ausgeführt werden.

Parametererkennung 1

Statische Motorparameter-Erkennung

Verwenden Sie diese Option, wenn *keine* Motordaten verfügbar sind und der Motor vor dem Start *nicht* von der Last getrennt werden soll. Der FU ermittelt:

- den Stator-Widerstand und
- die Stator-Streuinduktivität

des Motors und startet den Motor in *offener Vektorregelung.* Das Drehen des Motors ist Bestandteil der Parametererkennung.

Parametererkennung 2

Dynamische Motorparameter-Erkennung

Verwenden Sie diese Option, wenn *keine* Motordaten verfügbar sind und der Motor vor dem Start von der Last getrennt werden soll. Der FU ermittelt:

- den Leerlaufstrom und
- das Massenträgheits moment

des Motors und startet den Motor in offener Vektorregelung.

_	
Daramotor	

Dieser Parameter definiert den *Modus* für den *Motorstop*.

Einstelloptionen:

Bremsrampe

Nach Erhalt eines Stoppbefehls senkt der FU die Ausgangsfrequenz entsprechend der *Verzögerungszeitkurve (Bremsrampe).* Wenn der FU die Mindestfrequenz erreicht, wird der Ausgang deaktiviert und der FU wechselt in den Bereitschaftszustand (Standby).

Der FU überwacht die Zwischenkreisspannung der Leistungszellen während des Herunterfahrens, um eine FU-Abschaltung aufgrund von *Überspannung* im Gleichspannungszwischenkreis zu vermeiden. Ist die Zwischenkreisspannung der Leistungszelle zu hoch, unterbricht der FU das Herunterfahren gemäß der *Verzögerungszeitkurve*. Die tatsächliche Motorauslaufzeit kann daher länger sein als die programmierte Motorauslaufzeit.

Freilauf-STOP

Der FU schaltet die Ausgangsspannung sofort nach Erhalt eines Stopp-Befehls ab, und der Motor läuft bis zum Stillstand frei aus.

STOP-Modus

Master/Slave-Betrieb

Parameter:

Master/Slave-Betrieb

Dieser Parameter aktiviert/deaktiviert den *Master/Slave-Betrieb* für Anwendungen mit *mehreren Frequenzumrichtern* (Multi-Frequenzumrichterbetrieb).

Einstelloptionen:

Deaktiviert Aktiviert

Der Master/Slave-Betrieb ist deaktiviert.

Der Master/Slave-Betrieb ist aktiviert.

KAPITELVERWEIS

Für den Master/Slave-Betrieb ist eine Kommunikation über Lichtwel-Ienleiter (LWL) zwischen dem Master-FU und dem Slave-FU notwendig.

Die Lichtwellenleiter werden jeweils an die LWL-Schnittstellen TX und RX der Baugruppe AP4 der Steuereinheiten angeschlossen, s. Kapitel "3.5.1 FU-Steuereinheit – Baugruppen".

Parameter:

Master/Slave-Modus

Mit diesem Parameter wird im Multi-Frequenzumrichterbetrieb dem FU die *Funktion* als *Master* oder als *Slave* zugeordnet.

HINWEIS

- Dieser Parameter gilt nur f
 ür die Parametereinstellung Master/Slave-Betrieb = Aktiviert.
- In einer Anwendung mit mehreren Antrieben muss ein FU als Master bestimmt sein. Alle anderen FUs müssen Slaves sein.

Einstelloptionen:

Master	Der FU
Slave	Der FU

Der FU ist Master in der Multi-FU-Anwendung.

Der FU ist Slave in der Multi-FU-Anwendung.

Parameter:

Master-Slave Freq. Differenz

Dieser Parameter definiert in einer Master/Slave-Konfiguration mit mehreren Antrieben die *max. zulässige Frequenzdifferenz* zwischen dem Master-FU und dem Slave-FU (engl.: droop).

- Einstellbereich: 0,0 ... 1,0 Hz
- *Flexible* Verbindung zwischen den Motoren: die maximale Master-Slave-Frequenzdifferenz beträgt 1,0 Hz, z. B. bei Förderbandantrieben.
- *Starre* Verbindung zwischen den Motoren: der Parameter sollte auf den Wert "0 Hz" eingestellt werden, z. B. Kugelmühlen, Sag-Mills

L				٦.
	_		_	L.
	_	_	_	L.
L	_	_	_	L
L	_	_	-	L
	_	_	_	L.
				L.

HINWEIS

Dieser Parameter gilt nur für die Parametereinstellung *Master/Slave-Betrieb = Aktiviert.*

Schnellstart

Parameter:

Freq. Such-Strom

Dieser Parameter definiert den *Motorstrom*, der bei der *Frequenzsuche* während eines *Schnellstarts* fließen soll.

Der FU fährt mit einem eingestellten Strom (s. Parameter *Freq. Suche Strom*) von 0 Hz hoch, bis er ein Gegenmoment erfährt. Sobald dieses Gegenmoment erkannt ist, hat der Umrichter die Motordrehzahl erfasst und regelt den Strom hoch, um den Motor wieder zu beschleunigen.

Einstellbereich: 0,10 ... 1,00 pu Der Einstellwert wird als relativer und dimensionsloser pu-Wert im *Per-Unit*-System eingegeben und entspricht einem Faktor für das Vielfache des Motornennstroms.

Parameter:

HINWEIS

Dieser Parameter gilt nur für die Parametereinstellung START-Modus = Schnellstart.

Motor-Start

Startfrequenz

Dieser Parameter definiert die initiale Ausgangsfrequenz des FU.

Einstellbereich: 0,0 ... 5,0 Hz Eine Startfrequenz \neq 0 Hz kann ein Motordrehmoment beim ersten Start zur Verfügung stellen. Der FU hält die Startfrequenz für eine bestimmte Zeit aufrecht, damit der Motor den magnetischen Fluss aufbauen kann.

	HINWEIS
\equiv	Eine zu h auf <i>FU-Ü</i>

Eine zu hohe Startfrequenz kann dazu führen, dass der FU beim Start auf *FU-Überstrom* anspricht.

Frequenzbereich für FU-Betrieb

Parameter:

Maximale Frequenz

Dieser Parameter definiert die *maximale Frequenz am FU-Ausgang*, mit der der FU einen Motor kontinuierlich betreiben kann.

Einstellbereich: 00,00 ... 80,00 Hz Wenn der FU länger als 0,5 s mit mehr als 10% über der maximalen Frequenz läuft, wird der FU abgeschaltet und die Fehlermeldung *System-Überdrehzahl* ausgegeben.

Parameter:

Minimale Frequenz

Dieser Parameter definiert die *minimale Frequenz am FU-Ausgang*, mit der der FU einen Motor kontinuierlich betreiben kann.

Einstellbereich: 00,00 ... 80,00 Hz

Motorstop:

Für die Parametereinstellung *STOP-Modus = Bremsrampe*, fährt der Umrichter den Motor auf die mit Parameter *Minimale Frequenz* eingestellte Mindestfrequenz herunter und schaltet dann auf *Freilauf-STOP*. Der FU wechselt in den Bereitschaftszustand (Standby) und der Motor läuft bis zum Stillstand frei aus.

Motorstart:

Nach dem Einschalten (START-Befehl) läuft der FU automatisch auf diesen eingestellten Wert hoch, sofern kein Sollwert vorgegeben ist.

FU-NENNDATEN

_			_		
Г	_			`	
	_	_	_		
	_	_	_		
	-	_	-		
1	-				
_	-	-	-		

HINWEIS

Die folgenden vier Parameter sind werkseitig so eingestellt, dass sie der Spezifikation des FU entsprechen. Diese Parametereinstellungen dürfen nicht verändert werden!

Parameter:

Eingangsnennspannung

Ausgangsnennspannung

Einstellbereich: 380 ... 15000 V Dieser Parameter definiert die FU-Eingangsnennspannung.

Parameter:

Einstellbereich: 380 ... 15000 V

Einstellbereich: 30,0 ... 3000,0 A Parameter: Ausgangsnennstrom

Dieser Parameter definiert der FU-Ausgangsnennstrom (Bemessungsstrom).

Dieser Parameter definiert die FU-Ausgangsnennspannung (Bemessungsspannung).

Parameter:

Einstellbereich:

100:5 ... 2000:5

FU-Eingang: Pri. Stromwandler-Nennstrom

Dieser Parameter definiert den primären Nennstrom der Stromwandler zur Messung des FU-Eingangsstromes.

Der FU-Eingangsstrom wird über zwei Stromwandler in V-Schaltung im Sternpunkt der Primärwicklung des Multi-Level-Transformators gemessen.

۱		H
I	=	D
l	—	k

HINWEIS

Der sekundäre Nennstrom der Stromwandler ist mit 5 A definiert und ann nicht verändert werden.

MOTOR-START/STOP

Parameter:

Hochlauframpe

Dieser Parameter definiert die Motorhochlaufzeit T1, in der der FU den Motor von 0 Hz bis auf den mit Parameter Motornennfrequenz eingestellten Wert beschleunigt.

Innerhalb dieser Zeitdauer beschleunigt der FU den Motor auf seine Nenndrehzahl (Nennfrequenz).

Einstellbereich: 5,0 ... 6000,0 s

Die folgende Abbildung zeigt den Zusammenhang zwischen der FU-Ausgangsfrequenz und der Motorhochlaufzeit T1 sowie der mit Parameter Bremsrampe einzustellenden Motorabbremszeit T₂.

Abb. 4-70 Frequenz-/Zeitdiagramm: Hochlauframpe und Bremsrampe

FU-Ausgangsfrequenz Motornennfrequenz (Motornenndrehzahl)

- T1: Dauer der Motorhochlaufzeit
- T2: Dauer der Motorabbremszeit

HINWEIS

Wenn die *Motorhochlaufzeit T1* zu kurz eingestellt ist, kann der FU auf *Überstrom* anregen und abschalten.

Parameter:

Bremsrampe

Einstellbereich: 5,0 ... 6000,0 s Dieser Parameter definiert die *Motorabbremszeit T₂*, in der der FU den Motor von dem mit Parameter *Motornennfrequenz* eingestellten Wert auf 0 Hz verzögert (siehe vorstehende Abbildung für Parameter *Hochlauframpe*).

1-	_	_	
	_	_	
1=	_		

HINWEIS

Wenn die *Motorabbremszeit T2* zu kurz eingestellt ist, kann der FU aufgrund von *Überspannung im Zwischenkreis der Leistungszelle* anregen und abschalten.

MS-NETZAUSFALL

Parameter:

Max. zul. FRT-Dauer

Totzeitkompensation

Einstellbereich: 0 ... 2000 ms Dieser Parameter definiert die *maximal zulässige Ausfalldauer des Mittelspannungsnetzes (MS-Netz)*, in der die FRT-Funktion wirksam sein kann und der FU-Betrieb aufrechterhalten werden kann.

FU-Systemeinstellung

Parameter:

Einstellbereich: 0 ... 20 µs Dieser Parameter wird verwendet, um die *Totzeiteffekte der Leistungskomponenten* zu kompensieren.

HINWEIS

Dieser Parameter ist werkseitig so eingestellt, dass er der Spezifikation des FU entspricht. Eine Veränderung dieser Parametereinstellung ist im Allgemeinen nicht erforderlich und obliegt dem Hersteller!

LEISTUNGSZELLEN

Zellen: Bypass-Fkt.

Dieser Parameter aktiviert/deaktiviert die Leistungszellen-Bypass-Funktion (Softwarefunktion) des FU.

ſ		
	=	
1		
L		

Parameter:

HINWEIS

Die Leistungszellen-Bypass-Funktion kann nur verwendet werden, wenn die Leistungszellen jeweils über eine Zellen-Bypass-Einheit gemäß den Bestelloptionen: MCB, ICB, RMB und RIB der Bestellkennung 12 im Produktcode verfügen.

Einstelloptionen:

0
1

Die Leistungszellen-Bypass-Funktion im FU ist deaktiviert.

Die Leistungszellen-Bypass-Funktion im FU ist aktiviert.

Parameter:

Anzahl: Zellen/Phase

Einstellbereich: 2 ... 9

Dieser Parameter definiert die Anzahl der Leistungszellen pro Phase des FU.

ACF
Fals
rum ⊳
,

ITUNG

sche Einstellungen können zu Beschädigungen von Anlagenteilen ren.

Dieser Parameter ist werkseitig so eingestellt, dass er der Spezifikation des FU entspricht. Eine Veränderung dieser Parametereinstellung nur nach Rücksprache mit AuCom!

MOTOR-START

Parameter:

Drehmoment Verstärkungsfaktor

Dieser Parameter definiert die Höhe der Drehmomentverstärkung am FU-Ausgang, um das Anfahrmoment des Motors beim Startvorgang zu erhöhen.

Einstellbereich: 1 ... 15%

Bei Lasten mit hohem Drehmoment (z. B. Kompressoren, Güllemaschinen oder Förderbänder) kann die Drehmomentverstärkung das Anfahren des Motors verbessern. Die Höhe der Drehmomentverstärkung sollte den Eigenschaften der Last entsprechend eingestellt werden.

=

HINWEIS

Ein zu groß eingestellter Wert für die Drehmomentverstärkung kann beim Start hohe Motoranlaufstromstärken bewirken und zu einer Überstromabschaltung des FU führen.

Das Verhalten der Drehmomenterhöhung hängt von der Einstellung des FU-Typs ab:

• Asynchronmotor: 0 Hz < f < 10 Hz

Der *Drehmoment Verstärkungsfaktor* erhöht die *FU-Ausgangsspannung*, solange die FU-Ausgangsfrequenz unterhalb von 10 Hz liegt.

Eine *Erhöhung* des Drehmoment Verstärkungsfaktors hat eine *Erhöhung* des Motorstroms im unteren Drehzahlbereich zur Folge. Die Höhe des Stromes richtet sich nach den Anforderungen der Last.

Die *Einstellung* des Drehmoment Verstärkungsfaktors darf den maximalen FU-Ausgangsstrom *nicht* überschreiten. Die Einstellung ist schrittweise durch Kontrolle der Messwerte des Motorstromes durchzuführen.

Abb. 4-71 U/f-Steuerkennlinie mit Drehmomentverstärkung

- mit:U:FU-Ausgangsspannungf:FU-Ausgangsfrequenz1Motornennspannung2Spannungsanhebung3Motornennfrequenz
- Synchronmotor: 0 Hz < f < 5 Hz (nur *FU-Typ = SYNC Motor U/f*):

Der *Drehmoment Verstärkungsfaktor* wirkt bei Synchronmotoren als *Strom-Sollwert* (FU-Ausgangsstrom) bis 5 Hz. Für eine Frequenz größer 5 Hz folgt ein Übergang in die U/f-Steuerung.

Die folgende Gleichung dient zur Einstellung des Anlaufstroms beim Starten eines Synchronmotors. Der Anlaufstrom wird über den Parameter *Drehmoment Verstärkungsfaktor* eingestellt.

Die Formel für den bezogenen Anlaufstroms [pu] lautet wie folgt:

Anlaufstrom [pu] =	Drehmoment Verstärkungsfaktor [%] * 0,001 * Motor-Über-
	lastlimit [%]

Es gilt:

Aplaufatram [nu]	Anlaufstrom [A]			
Antauisti oni [pu] –	Motornennstrom [A]			

Daraus folgt für die Ermittlung des *absoluten Anlaufstromes* [A] bei gegebenem *Drehmoment Verstärkungsfaktor* [%]:

Anlaufstrom [A] =	Motornennstrom [A] * Drehmoment Verstärkungsfaktor [%] *
	0,001 * Motor-Überlastlimit [%]

Beispiel 1:

- Für einen Drehmoment Verstärkungsfaktor = 10%
- und einer Motor-Überlastlimit = 100 %
- und einem bezogenen Anlaufstrom [pu] = 1,0
- und einem Motornennstrom = 61 A,

⇒ beträgt der absolute Anlaufstrom = 61 A.

Beispiel 2:

- Für einen Drehmoment Verstärkungsfaktor = 5 %
- und einer Motor-Überlastlimit = 120 %
- und einem bezogenen Anlaufstrom [pu] = 0,6
- und einem Motornennstrom = 61 A,

⇒ beträgt der absolute Anlaufstrom = 36,6 A

Für die Bestimmung des *Drehmoment Verstärkungsfaktors* [%] bei gegebenem Anlaufstrom ergibt sich:

Drehmoment Verstärkungsfaktor [%]:				
	Anlaufstrom [A]			
	= Motornennstrom [A] * Motor-Überlastlimit [%] * 0,001			
bzw.:	= Anlaufstrom [pu] Motor-Überlastlimit [%] * 0,001			

UMRICHTERPARAMETER 2

AuCom	S Bereit	FU Bereit		FU Betrieb		Störung	20:05:51 09 / 03 / 2023
Umrichter	parameter 2 —						FU-Monitor
Drehmoment-Modu	Deaktiviert		~				Trend- rekorder
FU-Ausgang Kompensatio SpngsUnsymmetr	n Deaktiviert ie		~				Parameter
Leistungszellen By pass: Ty	Kein Zellen-Bypass		~				Ereignis- rekorder
							Leistungs- zellen:Status
Parameter Herunterladen	Parameter Hochladen			Vorherige Seite	2/7	Nächste Seite	Weitere Einstellungen
							,

Abb. 4-72 Hauptmenü: Parameter – Umrichterparameter 2

Parameterübersicht

Parametername	Einstellwert (Voreinstellung)	Einstellbereich bzw. Einstelloptionen			
	Motor-Start				
Schwerlast-Start*	Deaktiviert	Deaktiviert / Aktiviert			
Drehmoment-Modus*	Deaktiviert	Deaktiviert / Aktiviert			
	Spannungsqualität				
FU-Ausgang: Kompensation SpngsUnsymmetrie*	Deaktiviert	Deaktiviert / Aktiviert			
	Leistungszellen				
Leistungszellen-Bypass: Typ	Kein Zellen-Bypass	Kein Zellen-Bypass / Schütz-Bypass / IGBT-Bypass / Redundanz: IGBT-Bypass / Redundanz: Schütz-Bypass			

* noch nicht in Funktion!

Tab. 4-11 Umrichterparameter 2 - Parameterübersicht

Parameterbeschreibung

LEISTUNGSZELLEN

Parameter:

Leistungszellen-Bypass: Typ

Dieser Parameter definiert diejenige *Leistungszellen-Bypass-Funktion* (SW-Funktion der Steuereinheit), welche der verwendeten Hardwarevariante der Leistungszellen in Bezug auf den Leistungszellen-Bypass entspricht.

1	
	—

HINWEIS

Die Hardwarevariante für den Leistungszellen-Bypass ist über die ausgewählte Bestelloption der *Bestellkennung 12* im Produktcode definiert.

ACHTUNG

Falsche Einstellungen können zu Beschädigungen von Anlagenteilen führen.

Dieser Parameter ist werkseitig so eingestellt, dass er der Spe- \triangleright zifikation des FU entspricht. Eine Veränderung dieser Parametereinstellung ist im Allgemeinen nicht erforderlich.

Einstelloptionen:

Kein Zellen-Bypass

Diese Einstellung ist zu verwenden, wenn für die Bestellkennung 12 im Produktcode die Bestelloption NCB ausgewiesen ist.

Die Leistungszellen des FU besitzen keine Zellen-Bypass-Einheiten. Im Fall einer defekten Leistungszelle schaltet der FU ab.

IGBT-Bypass

Elektronischer Zellen-Bypass (IGBT-Bypass):

Diese Einstellung ist zu verwenden, wenn für die Bestellkennung 12 im Produktcode die Bestelloption ICB ausgewiesen ist.

Sämtliche Leistungszellen des FU sind mit einer IGBT-Bypass-Einheit ausgestattet. Fällt eine Leistungszelle während des Betriebs aus, sendet die Steuereinheit entsprechende Steuersignale an die integrierten Bypass-IGBTs, so dass diese den Ausgang der fehlerhaften Leistungszelle kurzschließen. Gleichzeitig wird die Funktion der Neutralpunktverschiebung aktiviert, um den FU mit reduzierter, symmetrischer Ausgangsleistung weiter zu betrieben. Eine Abschaltung des FU ist nicht notwendig.

Schütz-Bypass

Elektro-mechanischer Zellen-Bypass (Schütz-Bypass):

Diese Einstellung ist zu verwenden, wenn für die Bestellkennung 12 im Produktcode die Bestelloption MCB ausgewiesen ist.

Sämtliche Leistungszellen des FU sind mit einer Schütz-Bypass-Einheit ausgestattet. Fällt eine Leistungszelle während des Betriebs aus, sendet die Steuereinheit ein Steuersignal an der integrierte Schütz-Bypass, dessen Hilfskontakt (Schließer) den Ausgang der fehlerhaften Leistungszelle kurzschließt. Gleichzeitig wird die Funktion der Neutralpunktverschiebung aktiviert, um den FU mit reduzierter, symmetrischer Ausgangsleistung weiter zu betrieben. Eine Abschaltung des FU ist nicht notwendig.

Redundanz: IGBT-Bypass

Redundante Leistungszelle mit IGBT-Bypass:

Diese Einstellung ist zu verwenden, wenn für die Bestellkennung 12 im Produktcode die Bestelloption RMB ausgewiesen ist.

Sämtliche Leistungszellen des FU sind mit einer IGBT-Bypass-Einheit ausgestattet. Jede Phase besitzt eine zusätzliche (redundante) Leistungszelle, die während des FU-Betriebs auch einen Beitrag zur Bildung der FU-Ausgangsspannung leistet. Fällt eine Leistungszelle während des Betriebs aus, sendet die Steuereinheit entsprechende Steuersignale an die integrierten IGBTs-Bypässe der entsprechenden Zellennummer in allen drei Phasen. Durch die redundante Leistungszelle steht die volle Höhe der FU-Ausgangsspannung weiterhin zur Verfügung.

Redundanz: Schütz-Bypass

Redundante Leistungszelle mit Schütz-Bypass:

Diese Einstellung ist zu verwenden, wenn für die Bestellkennung 12 im Produktcode die Bestelloption RIB ausgewiesen ist.

Sämtliche Leistungszellen des FU sind mit einer Schütz-Bypass-Einheit ausgestattet. Jede Phase besitzt eine zusätzliche (redundante) Leistungszelle, die während des FU-Betriebs auch einen Beitrag zur Bildung der FU-Ausgangsspannung leistet. Fällt eine

Leistungszelle *während des Betriebs* aus, sendet die Steuereinheit entsprechende Steuersignale an die *integrierten Schütz-Bypässe der entsprechenden Zellennummer in allen drei Phasen.* Durch die redundante Leistungszelle steht die volle Höhe der FU-Ausgangsspannung weiterhin zur Verfügung.

MOTORPARAMETER 1

AuCom	MS Bere	eit 🌔	FU Bereit		FU B	etrieb		Störung				20:05:51 09 / 03 / 2023
Moto	parame	ter 1									١	FU-Monitor
Mote Nennfreque	or- 50.00	Hz	Motor-Massenträg- heitsmoment	30.0	kg m²	PI-Regler (P-	Magn.Fl -Verstärl	uss): kung 5.	00			
Mote Nennspannu	or- ng 6000	v	Stator- Widerstand	0.100	%	PI-Regler (Magn.Fl I-	uss): Zeit 2.	00	s		Trend- rekorder
Moto Nenndrehza	n- hl 980	U/min	Stator- Streuinduktivität	16.000	%	PI-Regle P.	er (Drehz Verstärk	ahl): kung 5.	00			Parameter
Mote Nennleistu	nr- 1000	kW	Synchronisierung Max. zu. Δφ	5.0	0	PI-Regle	er (Drehz	ahl): -Zeit 3.	00	•		
Mote Nennstre	or- 77	A	Verstärkung Motor-Übererreg.	0	%	PI-Regler P-	(Wirkst Verstär	rom): 1. kung 1.	00			Ereignis- rekorder
Motor-Überlastlin	nit 100	%	Motor-Übererreg. ab Frequenz	20	Hz	PI-Regler	(Wirkst	rom): -Zeit 10	.00	n#		Leistungs-
Moto Leerlauf str	or- 25.000	%	Magn. Fluss: Nennwert	0.96	pu							zellen:Status
												Waitara
Parameter Herunterladen	Para Hoch	meter Iladen			Vo	rherige Seite	3/7	Näch	ste Se	eite		Einstellungen

Abb. 4-73 Hauptmenü: Parameter – Motorparameter 1

PARAMETERÜBERSICHT

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstellbereich				
Motor-Nenndaten							
Motor-Nennfrequenz	50,00	Hz	5,00 80,00 Hz				
Motor-Nennspannung	6000	V	50 15000 V				
Motor-Nenndrehzahl	980	U/min	0 3600 U/min				
Motor-Nennleistung	1000	kW	1 60000 kW				
Motor-Nennstrom	77	А	1,0 1600,0 A				
ĺ	Überlastlastbetrieb						
Motor-Überlastlimit	100	%	100 200 % [von In]				
	Motor-Nenndaten						
Motor-Leerlaufstrom	25,000	%	0,000 50,000 %				
Motor-Massenträgheitsmoment	30,0	kg m ²	1,0 3000,0 kg m ²				
Stator-Widerstand	0,1	%	0,000 25,000 %				
Stator-Streuinduktivität	16,000	%	0,000 50,000 %				
Syr	nchrone Umschaltur	ıg					
Synchronisierung: Max. zul. $\Delta \phi$	3,00	Grad	0,5 5,0 °				
М	otor-Bremsvorgang						
Verstärkung Motor-Übererreg.	0	%	0 30 %				
Motor-Übererreg. ab Frequenz	3,00	Hz	1 30 Hz				
	Motor-Nenndaten						
Magn. Fluss Sollwert	0,96	pu	0,10 1,00 pu				
	PI-Regler						
PI-Regler (Magn. Fluss): P-Verstärkung	5,00	-	0,50 20,00				
PI-Regler (Magn. Fluss): I-Zeit	2,00	S	0,10 20,00 s				
PI-Regler (Drehzahl):	5,00	-	0,50 20,00				

Motor-Nennfrequenz

Motor-Nennspannung

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstellbereich
P-Verstärkung			
PI-Regler (Drehzahl): I-Zeit	3,00	S	0,10 20,00 s
PI-Regler (Wirkstrom): P-Verstärkung	1,00	-	0,10 20,00
PI-Regler (Wirkstrom): I-Zeit	3,00	S	0 ,1 0 50,00 ms

Tab. 4-12 Motorparameter 1 - Parameterübersicht

Parameterbeschreibung:

MOTOR-NENNDATEN

Einstellbereich: 5,00 ... 80,00 Hz

Dieser Parameter definiert die *Nennfrequenz des Motors*. Die Motornennfrequenz ist gemäß der Angabe auf dem Motor-Typenschild einzustellen.

Parameter:

Parameter:

Einstellbereich: 50 ... 15000 V

Dieser Parameter definiert die *Nennspannung des Motors*. Die Motornennspannung (Außenleiterspannung) ist gemäß der Angabe auf dem Motor-Typenschild einzustellen.

Die folgende Abbildung stellt das Verhältnis zwischen der Motornennfrequenz und der Motornennspannung dar (U/f-Steuerkennlinie).

mit:U:FU-Ausgangsspannung
f:f:FU-Ausgangsfrequenz1Motornennspannung2Motornennfrequenz [Hz]3Maximale Motorfrequenz

MVH 2.0

HINWEIS

- Wenn die Motornennspannung *niedriger* als die Spannung auf dem Typenschild des Motors eingestellt ist, wird der Motor mit reduzierter Leistung arbeiten (Motor *untererregt*).
- Wenn die Motornennspannung größer als die Spannung auf dem Typenschild des Motors eingestellt ist, kann dies zu einer magnetischen Sättigung des Motors führen, den Wirkungsgrad verringern und die Erwärmung des Motors erhöhen (Motor übererregt).

Parameter:

Motor-Nenndrehzahl

Motor-Nennleistung

Motor-Nennstrom

Motor-Überlastlimit

Einstellbereich: 0 ... 3600 U/min Dieser Parameter definiert die *Nenndrehzahl des Motors*. Die *Motor-Nenndrehzahl* ist gemäß der Angabe auf dem Motor-Typenschild einzustellen.

Parameter:

Einstellbereich: 1 ... 60000 kW Dieser Parameter definiert die *Nennleistung des Motors*. Die *Motor-Nennleistung* ist gemäß der Angabe auf dem Motor-Typenschild einzustellen.

Parameter:

Einstellbereich: 1,0 ... 1600,0 A Dieser Parameter definiert den *Nennstrom des Motors*. Der *Motor-Nennstrom* ist gemäß der Angabe auf dem Motor-Typenschild einzustellen.

ÜBERLASTBETRIEB

Parameter:

Dieser Parameter definiert den *maximalen FU-Ausgangsstrom* bezogen auf den Motornennstrom.

Einstellbereich: 100 ... 200 % Der Einstellwert wird als Prozentwert des Motornennstroms eingegeben.

Beispiel:

Beträgt der Motornennstrom 61 A und das *Motor-Überlastlimit* wird auf 100% eingestellt, beträgt der *maximale FU-Ausgangsstrom* 61 A. Wird das *Motor-Überlastlimit* auf 120% eingestellt, beträgt der *maximale FU-Ausgangsstrom* 73,2 A.

HINWEIS

Wird der Parameter *Motor-Überlastlimit* auf 100% eingestellt, lässt der FU nicht mehr als den Motornennstrom zu. Ist der Strombedarf höher, reduziert der FU die Geschwindigkeit, ohne eine Meldung anzuzeigen. Aus diesem Grund wird empfohlen, diesen Wert mindestens auf 110% einzustellen (Regelreserve).

MOTOR-NENNDATEN

Parameter:

Motor-Leerlaufstrom

Dieser Parameter definiert den *Leerlaufstrom des Motors*. Der Motorleerlaufstrom ist gemäß der Angabe auf dem Motor-Typenschild einzustellen.

Einstellbereich: 0,000 ... 50,000 % Der Einstellwert wird als Prozentwert des Motornennstroms eingegeben.

HINWEIS

Wenn keine detaillierten Motordaten verfügbar sind, kann der FU die Motoreigenschaften automatisch ermitteln. Dazu ist für den Parameter *START-Modus* die Parametereinstellung *Parametererkennung 1* oder *Parametererkennung 2* zu verwenden.

Falsche Einstellungen des Leerlaufstroms können einen Einfluss auf die maximale FU-Ausgangsspannung haben.

Parameter:

Motor-Massenträgheitsmoment

Einstellbereich: 1,0 ... 3000,0 kgm² Dieser Parameter definiert das *Massenträgheitsmoment des Motors*. Das Massenträgheitsmoment ist gemäß des Motor-Datenblattes einzustellen bzw. wird für die Parametereinstellung *START-Modus = Parametererkennung 2* automatisch ermittelt.

Parameter:

Stator-Widerstand

BEDIENUNG UND ANZEIGEN

Dieser Parameter definiert den *ohmschen Widerstand des Motorstators*. Der Statorwiderstand ist gemäß der Angabe des Motor-Datenblattes einzustellen bzw. wird für die Parametereinstellungen *START-Modus = Parametererkennung 1* und *START-Modus = Parametererkennung 2* automatisch ermittelt.

Einstellbereich: 0,000 ... 25,000 %

Der Einstellwert wird als Prozentwert eingegeben und kann nach der folgenden Formel ermittelt werden:

$$R_s[\%] = 100 \% * \sqrt{3} * R_s[\Omega] * \frac{Motornennstrom [A]}{Motornennspannung [V]}$$

- <u>mit</u>: Rs[Ω]: *Absoluter* Wert des Strang-Statorwiderstandes (aus Motor-Datenblatt oder automatisch ermittelt)
 - Rs[%] *Relativer* Wert des Strang-Statorwiderstandes, bezogen auf den Statorwiderstand, der aus den Nenndaten des Motors ermittelt wird

Parameter:

Stator-Streuinduktivität

Dieser Parameter definiert die *Streuinduktivität des Motorstators*. Die Stator-Streuinduktivität ist gemäß der Angabe des Motor-Datenblattes oder anhand von Erfahrungswerten einzustellen.

Einstellbereich: 0,000 ... 50,000 % Der Einstellwert wird als Prozentwert eingegeben bzw. wird für die Parametereinstellung *START-Modus = Parametererkennung 1* automatisch ermittelt.

SYNCHRONE UMSCHALTUNG

Parameter:

Synchronisierung: Max. zul. Δφ

Dieser Parameter definiert bei Frequenzumrichtern mit *Synchroner Umschaltung* (Transfer des Motors *vom FU zum Netz*, bzw. Motor *vom Netz zum FU*) die *maximal zulässige Phasenwinkeldifferenz* zwischen den Außenleiterspannungen des FU-Spannungsystems und den Außenleiterspannungen des MS-Netzes.

Einstellbereich: 0,5 ... 5,0 ° Kleiner Einstellwert der max. zul. Phasenwinkeldifferenz:

Je kleiner die max. zul. Phasenwinkeldifferenz, desto kleiner ist der transiente Motorstrom beim Umschalten. Ein kleiner Einstellwert erschwert jedoch den Synchronisiervorgang und es kann länger dauern, bis die *synchrone Umschaltung* erfolgen kann.

Großer Einstellwert der max. zul. Phasenwinkeldifferenz: Der Synchronisiervorgang ist schneller, aber der transiente Motorstrom kann während der Umschaltung des Motors höher sein.

Motor-Bremsvorgang

Parameter:

Verstärkung Motor-Übererreg.

Mit diesem Parameter kann eine *Motor-Übererregung* eingestellt werden, die bei einem Bremsvorgang automatisch zum Einsatz kommt.

Eine große Lastträgheit während des Bremsvorgangs kann zu einer Leistungsrückspeisung in den FU führen (Generatorbetrieb des Motors). Dies kann in den Leistungszellen zu Kondensatorüberspannungsfehlern führen. Durch die Aktivierung einer Übererregung kann dies vermieden werden, indem ein Teil der Rotationsenergie bereits im Motor aufgebraucht wird (höhere Motorverluste).

Einstellbereich: 0 ... 30% Der Einstellwert wird als Prozentwert bezogen auf den mit Parameter *Magn. Fluss: Nennwert* eingestellten Wert eingegeben.

Wenn die Übererregungsverstärkung *zu hoch* eingestellt ist, kann der Motorausgangsstrom zu hohe Werte annehmen und dadurch Überstromabschaltungen des FU verursachen.

HINWEIS

Diese Funktion kann bei einem großen Lastmoment oder Lasten mit Unwucht wie z. B. Kugelmühlen verwendet werden, um Überspannungen während des Betriebs zu verhindern.

Für weitere Informationen zu solchen Anwendungen, sollte der jeweilige Anlagenbetreiber konsultiert werden.

Parameter:

Motor-Übererreg. ab Frequenz

Magn. Fluss: Sollwert

Einstellbereich: 1 ... 30 Hz Dieser Parameter definiert die *Frequenz*, bei der die *Übererregung während des Motor-Bremsvorgangs* einsetzt.

MOTOR-NENNDATEN

Parameter:

Dieser Parameter definiert den *Sollwert des magnetischen Flusses* für den Motor.

Einstellbereich: 0,10 ... 1,00 pu Der Einstellwert wird als relativer und dimensionsloser pu-Wert im Per-Unit-System eingegeben.

PI-REGELUNG DES MAGNETISCHEN FLUSSES Die folgenden beiden Parameter:

- PI-Regler (Magn. Fluss): P-Verstärkung und
- PI-Regler (Magn.Fluss): I-Zeit

steuern das Verhalten des internen Regelkreises für den *magnetischen Fluss*. Durch geeignete Parametereinstellungen kann das *dynamische Ansprechverhalten* der Regelung optimiert werden.

Parameter:

PI-Regler (Magn.Fluss): P-Verstärkung

Einstellbereich: 0,50 ... 20,00 Dieser Parameter definiert die *Proportionalverstärkung* der Regelung für den *magnetischen Fluss*.

Parameter	
Farameter.	

PI-Regler (Magn.Fluss): I-Zeit

Einstellbereich: 0,10 ... 20,00 s Dieser Parameter definiert die Integralzeit der Regelung für den magnetischen Fluss.

PI-REGELUNG DER DREHZAHL

Die folgenden zwei Parameter:

- PI-Regler (Drehzahl): P-Verstärkung und
- PI-Regler (Drehzahl): I-Zeit

steuern das Verhalten des internen Regelkreises für die *Drehzahl*. Durch geeignete Parametereinstellungen kann das *dynamische Ansprechverhalten* der *Drehzahlregelung* optimiert werden.

Eine Erhöhung der *Drehzahl-Proportionalverstärkung* und eine Verringerung der *Drehzahl-Integrationszeit* kann das dynamische Verhalten des Drehzahlregelkreises optimieren. Wenn jedoch die Verstärkungseinstellung zu groß oder die *Integrationszeit* zu klein ist, kann das System instabil werden.

Falls die Standardwerte kein angemessenes Regelverhalten erbringen, ist die folgende Vorgehensweise zu empfehlen:

- Schritt 1: Erhöhen Sie schrittweise die *Drehzahl-Proportionalverstärkung* und prüfen Sie jedes Mal, ob das System nicht zum Schwingen neigt.
- Schritt 2: Sobald das System stabil ist, verringern Sie schrittweise die *Drehzahl-Integrationszelt*, damit das System schneller reagiert (Feinabstimmung).

	. 1
=	
—	
=	

HINWEIS

Diese Parameter gelten nur für den Einsatz einer Vektorregelung (s. Einstellung für Parameter *FU-Typ*).

Parameter:

PI-Regler (Drehzahl): P-Verstärkung

Einstellbereich: 0,50 ... 20,00 Dieser Parameter definiert die Proportionalverstärkung des Drehzahlreglers.

Dieser Parameter definiert die Integrationszeit des Drehzahlreglers (Feinabstimmung).

Parameter:

PI-Regler (Drehzahl): I-Zeit

Einstellbereich: 0,10 ... 20,00 s

MVH 2.0

PI-REGELUNG DES MOTOR-WIRKSTROMS Die folgenden zwei Parameter:

- PI-Regler (Wirkstrom): P-Verstärkung und
- PI-Regler (Wirkstrom): I-Zeit

steuern das Verhalten des internen Regelkreises für den *Motor-Wirkstrom*. Durch geeignete Parametereinstellungen kann das *dynamische Ansprechverhalten* der *Stromregelung* verbessert werden.

=	
=	

•

HINWEIS

Wenn die *U/f-Regelung* in einem *Master/Slave-Betrieb* verwendet wird, steuern diese Parameter die Ansprechcharakteristik des Lastausgleichs im Master/Slave-Betrieb.

ACHTUNG

- Die Ausgangskurvenform sind sorgfältig zu beobachten, wenn diese Parameter angepasst werden.
- Ungeeignete Parametereinstellungen können die Kurvenform des Ausgangskreises verzerren.
- Ungeeignete Parametereinstellungen können dazu führen, dass der FU aufgrund des Überstromkriteriums abschaltet.

PI-Regler (Wirkstrom): P-Verstärkung

Einstellbereich: 0,10 ... 15,00 Dieser Parameter definiert die Proportionalverstärkung des Wirkstromreglers.

Parameter:

PI-Regler (Wirkstrom): I-Zeit

Einstellbereich: 0,10 ... 50,00 ms Dieser Parameter definiert die Integrationszeit des Wirkstromreglers (Feinabstimmung).

MOTORPARAMETER 2

AuCom	MS Bereit	FU B	ereit 🔘	FU Betrieb		Störung	20:05:51 09 / 03 / 2023
Mot	orparameter 2			Peder			UF-Monitor
Modus	Restspannungstest	~	Autom.	Berechnung			
Phasenfolge: Vorwärtsrichtung	Rechtsdrehfeld	~	Wirkstro Autom.	m-Regler: Berechnung			Trend- rekorder
Drehzahlgeber: Impulszahl	1024	~	Fluss-R Autom.	egler: Berechnung			Parameter
Last-Typ	Lüfterapplikation	\sim	U/f-Schl	upfkompensation			
	1]		Ereignis- rekorder
							Leistungs- zellen:Status
Parameter Herunterladen	Parameter Hochladen			Vorherige Seite	4/7	Nächste Seite	Weitere Einstellungen

Abb. 4-75 Hauptmenü: Parameter – Motorparameter 2

```
Parameterübersicht
```

Parametername	Einstellwert (Voreinstellung)	Einstelloptionen						
Schnellstart								
Frequenzsuche: Modus	Restspannungstest	Restspannungstest / Vorwärts-Suche / Rückwärts-Suche / Bidirektionale Suche						
FU	I-Phasenfolge							
Phasenfolge: FU-Ausgang	Rechtsdrehfeld	Rechtsdrehfeld / Linksdrehfeld						
Drehzahlgeber: Impulszahl	1024	512 65535						
Mo	tor-Start/Stop							
Last-Typ	Lüfter	Lüfter / Pumpe						
	PI-Regler							
Drehzahl-Regler: Autom. Berechnung								
Wirkstrom-Regler: Autom. Berechnung								
Fluss-Regler: Autom. Berechnung								
U/f-Schlupfkompensation								

Tab. 4-13Motorparameter 2 - Parameterübersicht

Parameterbeschreibungen

SCHNELLSTART

Parameter:

Frequenzsuche: Modus

Dieser Parameter definiert den *Modus für die Erkennung der aktuellen Motordrehzahl* bei einer noch *rotierenden Motorwelle* (Parametereinstellung *Start-Modus = Schnellstart*).

Einstelloptionen:

Ein frei auslaufender Motor induziert durch den Restmagnetismus im Statorblech und der Restspannungstest sich noch drehenden Motorwelle an seinen Anschlussklemmen eine Restspannung. Der FU misst diese Spannung und ermittelt daraus ihre aktuelle Frequenz und Phasenlage. Mit den ermittelten Werten wird der FU auf den Motor geschaltet und fährt diesen anhand der eingestellten Rampen wieder auf den vorgegebenen Sollwert. Der FU fährt seine Ausgangsfrequenz anhand der eingestellten Hochlauframpe mit Vorwärts-Suche positiven Frequenzwerten hoch, bis die Ausgangsfrequenz mit der Frequenz des sich noch drehenden Motors übereinstimmt. Der FU fährt seine Ausgangsfrequenz anhand der eingestellten Hochlauframpe mit Rückwärts-Suche negativen Frequenzwerten hoch, bis die Ausgangsfrequenz mit der Frequenz des sich noch drehenden Motors übereinstimmt. Der FU fährt seine Ausgangsfrequenz anhand der eingestellten Hochlauframpe zuerst mit **Bidirektionale Suche** positiver Frequenzwerten hoch, bis die Ausgangsfrequenz mit der Frequenz des sich noch drehenden Motors übereinstimmt. Sollten die Frequenzen nicht übereinstimmen, fährt der FU anschließend seine Ausgangsfrequenz anhand der eingestellten Hochlauframpe mit negativen Frequenzwerten hoch.

FU-PHASENFOLGE

Parameter:

Phasenfolge: FU-Ausgang

Dieser Parameter definiert die *Phasenfolge der FU-Ausgangsspannung* für die *FU-Vorwärtsrichtung.*

Einstelloptionen:

Linksdrehfeld Die FU-Ausgangsspannungen besitzen ein Linksdrehfeld: Phasenfolge U \rightarrow W \rightarrow V

Rechtsdrehfeld

Die FU-Ausgangsspannungen besitzen ein Rechtsdrehfeld: Phasenfolge U \rightarrow V \rightarrow W

	\equiv	
	=	
1		

HINWEIS

- Dieser Parameter kann verwendet werden, wenn z.B. durch einem Verdrahtungsfehler zwei Phasen vertauscht wurden.
- Durch eine geänderte Einstellung dieses Parameters ändert sich die Drehrichtungsanzeige im FU-Monitor *nicht*!

Parameter:

Drehzahlgeber Impulszahl

Dieser Parameter definiert die Anzahl der Impulse pro Umdrehung des Drehzahlgebers.

Einstellbereich: 512 ... 65535 Die Einstellung der Impulszahl muss mit der Spezifikation des eingesetzten Drehzahlgebers übereinstimmen.

Z
\geq
\equiv

KAPITELVERWEIS

Der Drehzahlgebers wird an den Klemmen VCO, AP, AN, ... der Baugruppe AP5 der Steuereinheit angeschlossen (s. Kapitel "3.5.1 FU-Steuereinheit – Baugruppen").

Motor-Start/Stop

Parameter:

Last-Typ

Dieser Parameter dient zur *Optimierung des Anfahrens von unterschiedlichen Lastträgheitsmomenten.* Er bewirkt, dass bei *hohem* Lastträgheitsmoment eine *längere* Zeit für den *Aufbau des magn. Flusses* bereitgestellt wird, bevor der Frequenzhochlauf startet.

Einstelloptionen:

Lüfter	<i>Lange Erregungswartezeit</i> – geeignet für die meisten mittelschweren/schweren Lasten (nicht nur <i>Lüfter</i> -Lasten).
Pumpe	<i>Kurze Erregungswartezeit</i> – geeignet für die meisten leichten Lasten (nicht nur <i>Pumpen</i> -Lasten).

PI-Regler

Parameter:

Drehzahl-Regler: Autom. Berechnung

Dieser Parameter aktiviert/deaktiviert die Funktion zur *automatischen Berechnung* des *Drehzahl*-Reglers.

Die automatische Berechnungsfunktion ist dann zu verwenden, wenn die Motordaten zur Eingabe der Motorparameter nicht zur Verfügung stehen oder die Anwendung eine weitere Abstimmung erfordert.

Einstelloptionen:

Die automatische Berechnungsfunktion ist deaktiviert.

Die automatische Berechnungsfunktion ist aktiviert.

Parameter:

Wirkstrom-Regler: Autom. Berechnung

Dieser Parameter aktiviert/deaktiviert die Funktion zur *automatischen Berechnung* des *Wirkstrom*-Reglers.

Die automatische Berechnungsfunktion ist dann zu verwenden, wenn die Motordaten zur Eingabe der Motorparameter nicht zur Verfügung stehen oder die Anwendung eine weitere Abstimmung erfordert.

Einstelloptionen:

 $\mathbf{\Lambda}$

Die automatische Berechnungsfunktion ist deaktiviert.

Die automatische Berechnungsfunktion ist aktiviert.

Parameter:

Fluss-Regler: Autom. Berechnung

Dieser Parameter aktiviert/deaktiviert die Funktion zur *automatischen Berechnung* des Reglers für den *magnetischen Fluss*.

Die automatische Berechnungsfunktion ist dann zu verwenden, wenn die Motordaten zur Eingabe der Motorparameter nicht zur Verfügung stehen oder die Anwendung eine weitere Abstimmung erfordert.

Einstelloptionen:

Die automatische Berechnungsfunktion ist deaktiviert.

Die automatische Berechnungsfunktion ist aktiviert.

Parameter:

U/f-Schlupfkompensation

Dieser Parameter aktiviert/deaktiviert die interne *Funktion zur U/f-Schlupfkompensation* für den FU mit der Parametereinstellung *FU-Typ = ASYNC Motor U/f.*

M

Eluce Doglar: Autom Barachpung

Die U/f-Schlupfkompensation kann verwendet werden, um die Motordrehzahl bei Laständerungen konstant zu halten.

Einstelloptionen:

Die Funktion zur U/f-Schlupfkompensation ist *deaktiviert*.

Die Funktion zur U/f-Schlupfkompensation ist aktiviert.

- *Erhöhung* der Antriebslast ⇒ automatische *Erhöhung* der Ausgangsfrequenz und Ausgangsspannung
- *Verringerung* der Antriebslast ⇒ automatische *Verringerung* der Ausgangsfrequenz und Ausgangsspannung

FUNKTIONSPARAMETER 1

Sofern nicht anders angegeben, können die *Funktionsparameter 1 nicht* geändert werden, während der Frequenzumrichter in Betrieb ist.

AuCon	MS Bereit	FU Bere	eit 🔘 F	U Betrieb	Stö	rung		20:05:51 09 / 03 / 2023
Rücksetzen auf	unktionsparameter 1		Analog					FU-Monitor
Werks- einstellungen	Deaktiviert	~	ausgang AO 1	Ausgangsfrequenz		~		
Al 1: f/n Sollwert- vorgabe - Ausfall	Deaktiviert	~	Analog- ausgang AO 2	Ausgangsstrom		~		Trend- rekorder
Al 2: f/n Istwert - Ausfall	Deaktiviert	~	Freigabe Rückwärtslauf	Deaktiviert		~		Parameter
Schnellabschal- tung bei MS- Netzausfall	Deaktiviert	~	Sollwertv orgabe über DI	Drehzahlsektion 3		~		Fucinais
Automatikstar nach MS-Ausfall	Deaktiviert	~	Betriebsart	Lokale Bedienung ((HMI)	~		rekorder
Freigabe Fernumschaltg. Betriebsart	Deaktiviert	~	Modus für Sollwertvorgabe	Sollwertv orgabe üb	er HMI	~]	Leistungs- zellen:Status
Fern – START/ STOP: DI-Modus	Pegelsignal	~	n/f Regelkreis	Offener Regelkreis	5	~		
				Vorherige Seite	5/7	Nächste Seite		Weitere Einstellungen
							Ĩ	

Abb. 4-76 Hauptmenü: Parameter – Funktionsparameter 1

PARAMETERÜBERSICHT

Parametername	Voreinstellung	Einstelloptionen
	Werkseinstellungen	
Rücksetzen auf Werkseinstellungen	Deaktiviert	Deaktiviert / Aktiviert
	Analoge Eingänge	
Al 1: f/n Sollwertvorgabe - Ausfall	Aktiviert	Minimum Frequenz / Letzter Sollwert
Al 2: f/n Istwert - Ausfall	Aktiviert	Null / Letzter Istwert
	MS-Netzausfall	
Schnellabschaltung bei MS-Netzausfall	Aktiviert	Deaktiviert / Aktiviert
Automatikstart nach MS-Ausfall	Aktiviert	Deaktiviert / Aktiviert
	FU-Betriebsarten	
Freigabe Fernumschaltg. Betriebsart	Aktiviert	Deaktiviert / Aktiviert
Fern – START/ STOP: DI-Modus	Pegelsignal	Pegelsignal / Impulssignal
	Analoge Ausgänge	
Analogausgang AO 1	Ausgangsfrequenz	Ausgangsfrequenz / Ausgangsstrom / Leistungszellen-Temperatur / Erregerstrom / Ausgangsleistung / Ausgangsleistungsfaktor / Ausgangsspannung
Analogausgang AO 2	Ausgangsfrequenz	Ausgangsfrequenz / Ausgangsstrom /

Parametername	Voreinstellung	Einstelloptionen
		Leistungszellen-Temperatur / Erregerstrom / Ausgangsleistung / Ausgangsleistungsfaktor / Ausgangsspannung
	Motor-Rückwärtslauf	
Freigabe Rückwärtslauf	Deaktiviert	Deaktiviert / Aktiviert
	Vorgabe feste Sollfreque	enz
Sollwertvorgabe über DI	Drehzahlsektion 3	Drehzahlsektion 3/ Drehzahlsektion 7
	FU-Betriebsarten	
Betriebsart	Lokale Bedienung (HMI)	Lokale Bedienung (HMI) / Fernbedienung (PLS) / Fernbedienung (DI)
	Vorgabe Sollfrequenz	<u>.</u>
Modus für Sollwertvorgabe	Lokale Eingabe	Sollwertvorgabe über HMI / Sollwertvorgabe über AI / Sollwertvorgabe über DI / Sollwertvorgabe über PLS
	n/f Regelkreis	
n/f Regelkreis	Offener Regelkreis	Offener Regelkreis / Geschlossener Regelkreis

Tab. 4-14 Funktionsparameter 1 - Parameterübersicht

HINWEIS

Parameterbeschreibung

WERKSEINSTELLUNGEN

Parameter:

Rücksetzen auf Werkseinstellungen

Dieser Parameter aktiviert/deaktiviert die *Funktion* der Schaltfläche *Rücksetzen auf Werkseinstellungen* des Touchscreen.

=	
=	

Die Schaltfläche Rücksetzen auf Werkseinstellungen befindet sich auf der Menüseite 7/7 des Menüs Parameter.

- Die Betätigung der Schaltfläche Rücksetzen auf Werkseinstellungen setzt sämtliche Parametereinstellungen des Menüs Parameter auf ihre Werkseinstellung zurück.
- Nach dem Rücksetzen auf die Werkseinstellungen müssen alle Umrichterparameter erneut geprüft und an den Auslieferungszustand des FU ggf. angepasst werden!

Einstelloptionen:

Deaktiviert Aktiviert Die Funktion der Schaltfläche Rücksetzen auf Werkseinstellungen ist deaktiviert.

Die Funktion der Schaltfläche Rücksetzen auf Werkseinstellungen ist aktiviert.

Analoge Eingänge

Parameter:

AI 1: f/n Sollwertvorgabe - Ausfall

Dieser Parameter definiert das *Verhalten des FU*, wenn das *analoge Eingangssignal* für die Sollfrequenz während des FU-Betriebs *nicht* mehr vorhanden ist.

Einstelloptionen:

Minimale Frequenz

Letzter Sollwert

Setzt die Sollfrequenz auf den mit Parameter Minimale Frequenz eingestellten Wert.

Behält den zuletzt empfangenen Frequenzsollwert bei.

Parameter:

Al 2: f/n Istwert - Ausfall

Dieser Parameter definiert das *Verhalten des FU*, wenn das *analoge Eingangssignal* für den Drehzahl-Istwert während des FU-Betriebs *nicht* mehr vorhanden ist.

Einstelloptionen:

Null Der Drehzahl-Istwert wird auf 0 gesetzt.

ACHTUNG

Es besteht die Gefahr, dass der FU auf maximale Drehzahl beschleunigt!

Letzter Istwert

Der letzte, übermittelte Drehzahl-Istwert vor dem Zeitpunkt des Signalverlustes wird als aktueller Drehzahl-Istwert beibehalten.

MS-Netzausfall

Parameter:

Schnellabschaltg. bei MS-Netzausfall

Dieser Parameter definiert das Abschaltverhalten des FU bei Ausfall der Netzspannung.

Einstelloptionen:

Deaktiviert

Aktiviert

Wenn die Netzspannung innerhalb der mit Parameter *Max. zul. MS-Netzausfalldauer* eingestellten Verzögerungszeit wiederhergestellt ist, führt der FU die mit Parameter *Automatikstart nach MS-Ausfall* eingestellte Aktion aus.

Der FU schaltet bei Ausfall der Netzspannung unverzögert ab.

Parameter: Automatikstart nach MS-Ausfall

Dieser Parameter aktiviert/deaktiviert den *automatischen Neustart* des FU bei Spannungswiederkehr *nach* einem vorangegangenen Ausfall der MS-Netzspannung.

Einstelloptionen:

Deaktiviert

Aktiviert

Nach einem MS-Netzausfall führt der FU *keinen* automatischen Neustart durch, sondern kehrt in den Bereitschaftszustand (Standby) zurück.

Nach einem Netzausfall führt der FU einen automatischen Neustart durch.

1	Н
	D

HINWEIS

Der FU startet nur dann, wenn:

- > die Startbedingungen weiterhin aktiv sind *und*
- wenn die Dauer des Netzausfalls kürzer ist als die mit Parameter Max. zul. MS-Netzausfalldauer eingestellten Verzögerungszeit (s. Kapitel "5.1.8 MS-Netzausfall".

FU-Betriebsarten

Parameter:

Freigabe Fernumschaltg. Betriebsart

Dieser Parameter aktiviert/deaktiviert die *Freigabe zur Aktivierung des FU-Fernbetriebs* über den digitalen Eingang (DI) *Fernumschaltung Betriebsart* (Anschlussklemmen -XS1:1,4) der I/O-Schnittstelleneinheit (SPS).

Abb. 4-77 Blockschaltbild – Freigabe zur Umschaltung der FU-Betriebsart über DI

Einstelloptionen:

Deaktiviert Aktiviert Die Freigabe zur Umschaltung der FU-Betriebsart über den DI ist *deaktiviert*.

Die Freigabe zur Umschaltung der FU-Betriebsart über den DI ist *aktiviert.* Es kann jetzt über den digitalen Eingang zwischen den Betriebsarten *Fernbetrieb (DI)* und *Lokale Bedienung (HMI)* umgeschaltet werden:

- DI ist inaktiv: Der FU befindet sich in der Betriebsart Lokale Bedienung (HMI).
- DI ist aktiv: Der FU befindet sich in der Betriebsart Fernbetrieb (DI).

_	_`	٦
	_	L
-	_	L
		L
		н

HINWEIS

Sobald der DI *Fernumschaltung Betriebsart* aktiv ist, wird die aktuelle Einstellung des Parameters *Betriebsart* (z. B. *Lokale Bedienung (HMI)* oder *Fernbedienung (PLS)*) mit der Einstellung *Fernsteuerung (DI)* überschrieben!

Parameter:

Fern - START/STOP: DI-Modus

Dieser Parameter definiert den *Signalmodus (Signaltyp)* für die Start/Stop-Befehle von Fern über *digitale Eingänge (DI)* der I/O-Schnittstelleneinheit (SPS).

ſ		
	\equiv	I
	=	

HINWEIS

HINWEIS

Dieser Parameter ist nur wirksam für die Betriebsart *Fernbedienung (DI)*.

Einstelloptionen:

Impulssignal

Die digitalen Eingänge (DI) werden durch Impulse aktiviert/deaktiviert. Die Impulslänge beträgt mindestens 500 ms.

\equiv		_		5
\equiv	1 =		_	L
	1 -		-	L
	1 =	_		L

I/O-Schnittstelleneinheit (SPS):

- > die Klemmen -XS1:1,10 sind als Impuls START definiert
- die Klemmen -XS1:1,9 sind als Impuls STOP definiert.

Pegelsignal

Die digitalen Eingänge (DI) werden durch Pegelsignale aktiviert/deaktiviert.

I/O-Schnittstelleneinheit (SPS):

HINWEIS

- Die Klemmen -XS1:1,10 sind als Pegel Vorwärts START/STOP definiert.
- Die Klemmen -XS1:1,9 sind als Pegel Rückwärts START/STOP definiert (DI-Funktion ist abhängig von pos. bzw. neg. Sollwert)

ANALOGE AUSGÄNGE

Parameter:

Analogausgang AO 1

Dieser Parameter definiert die zu übertragende Messgröße für den Analogausgang AO1.

Die Signalleitung des *Analogausgangs AO1* wird an die Klemmen 9 (I3) und 10 (M3) des Klemmleistenblocks -XS18T der I/O-Schnittstelleneinheit angeschlossen.

Einstelloptionen:

Momentaner Frequenzwert am FU-Ausgang

Momentaner Phasenstromwert im FU-Ausgang

Temperatur im Leistungszellenschrank

Erregerstrom-Sollwert (nur für Synchronmotoren)

Momentanwert der Wirkleistung im FU-Ausgang

Momentanwert des Motor-Wirkleistungsfaktors (*cos phi* des Motors)

Momentanwert der Außenleiterspannungen (Mittelwert) am FU-Ausgang

Parameter:

Analogausgang AO 2

Dieser Parameter definiert die zu übertragende Messgröße für den Analogausgang AO 2.

Die Signalleitung des *Analogausgangs AO2* wird an die Klemmen 11 (I4) und 12 (M4) des Klemmleistenblocks -XS18T der I/O-Schnittstelleneinheit angeschlossen.

	HINWEIS
\equiv	Einstello
—	

Einstelloptionen: (s. Beschreibung Parameter Analogausgang AO 1)

Motor-Rückwärtslauf

Parameter:

Freigabe Rückwärtslauf

Dieser Parameter aktiviert/deaktiviert die Freigabe für einen Motor-Rückwärtslauf.

Ausgangsfrequenz
Ausgangsstrom
Leistungszellen Temperatur
Errogorstrom
Litegerstrom
Ausgangsleistung
Ausgangsleistungsfaktor
Ausgangsspannung

	_l ł
=	[

HINWEIS

Der Rückwärtslauf erfordert einen *negativen* Sollwert.

Einstelloptionen:

Deaktiviert

Die Freigabe für einen Motor-Rückwärtslauf ist *deaktiviert*. Ein Rückwärtslauf des Motors ist *nicht* möglich.

Aktiviert

Die Freigabe für einen Motor-Rückwärtslauf ist *aktiviert*. Ein Rückwärtslauf des Motors ist möglich.

Vorgabe feste Sollfrequenz

Parameter:

Sollwertvorgabe über DI

Mit diesem Parameter wird der *Modus zur Auswahl des Fest-Sollwertes* für die FU-Ausgangsfrequenz eingestellt.

Jeder Modus wertet die binären Zustände von drei digitalen Eingängen (DI) aus. Eine Binärkodierung der DI-Zustände liefert den entsprechenden Algorithmus zur Auswahl der FU-Sollfrequenz.

Betriebes verändert werden.

HIN	NWEIS
۶	Dieser Parameter ist nur für die Parametereinstellung <i>Modus für Sollwertvorgabe = Sollwertvorgabe über DI</i> gültig.
۶	Für diesen Parameter kann die Einstellung auch während des FU-

Einstelloptionen:

FU-Sollfrequenz wird bestimmt zu:

Drehzahlsektion 3

- ▶ f1 oder
- ▶ f2 oder
- ≻ f3

Drehzahlsektion 7 FU-Sollfrequenz wird bestimmt zu:

- > f1 oder
- ▶ (2 * f1+ f2) / 3 oder
- ➢ f2 oder
- ➤ (2 * f2+ f1) / 3 oder
- ➤ (2 * f2+ f3) / 3 oder
- ➤ (2 * f3+ f2) / 3 oder
- ≻ f3

Die folgende Tabelle repräsentiert den Zusammenhang zwischen der gewählten Einstelloption des Parameters, den einzelnen, binären Zuständen der drei digitalen Eingänge (DI) und der daraus resultierenden Sollfrequenz am FU-Ausgang.

Auswahl der	Status der Digitale Eingänge			Freed	
Drehzahl- sektion	DI: <i>Drehzahl 3</i>	DI: Drehzahl 2	DI: <i>Drehzahl 1</i>	Sollfrequenz	
Solution	(-XST:1,5)	(-XST:1,4)	(-XST:1,3)		
	0	0	0	ungültig	
Drehzahl- sektion 3	0	0	1	f1	
	0	1	0	f2	
	1	0	0	f3	
	0	1	1	ungültig	

BEDIENUNG UND ANZEIGEN

	1	0	1	ungültig
	1	1	0	ungültig
	1	1	1	ungültig
	0	0	0	ungültig
	0	0	1	f1
Drehzahl- sektion 7	0	1	0	(2 * f1+ f2) / 3
	1	0	0	f2
	0	1	1	(2 * f2+ f1) / 3
	1	0	1	(2 * f2+ f3) / 3
	1	1	0	(2 * f3+ f2) / 3
	1	1	1	f3

Tab. 4-15Sollfrequenz - Sollwertvorgabe über digitale Eingänge (DI)

FU-Betriebsart

Betriebsart

Dieser Parameter definiert die Quelle zur Bedienung des FU.

Π H	NWEIS
→ →	Dieser Parameter ist nur gültig für die Parametereinstellung <i>Freigabe: Fernumschaltg. Betriebsart = Deaktiviert.</i>
~	Für die Parametereinstellung: <i>Freigabe: Fernumschaltg. Betriebsart = Aktiviert</i> wird die aktuelle Parametereinstellung: <i>Betriebsart = Fernbedienung (DI)</i> oder <i>=Fernbedienung (PLS)</i> mit der Parametereinstellung: <i>Betriebsart = Lokale Bedienung (HMI)</i> überschrieben!
>	Für diesen Parameter kann die Einstellung auch während des FU- Betriebes verändert werden. Der vor der Umschaltung von <i>Fern- betrieb (DI)</i> auf <i>Lokale Bedienung (HMI)</i> gültige Betriebszustand des FU wird beibehalten.
>	Fällt bei der <i>Betriebsart = Prozellseitsystem (PLS)</i> die Kommuni- kation zwischen der FU-Steuereinheit und dem Leitsystem aus, läuft der FU-Betrieb mit den aktuellen Einstellungen weiter. Die <i>Betriebsart</i> kann über die Bedieneinheit (HMI) auf <i>Fernbedienung</i> <i>(DI)</i> oder <i>Lokale Bedienung (HMI)</i> umgestellt werden.

Einstelloptionen:

Parameter:

Die START/STOP-Befehle können ausschließlich über die Bedieneinheit (HMI) gegeben werden (Vor-Ort-Bedienung). Das Rücksetzen von Störmeldungen über die Schaltfläche *RESET* oder den DI *RESET-Tür-Taster* (Klemme -XS3:1,6) ist möglich.

Die START/STOP-Befehle können ausschließlich über das Kommunikationsprotokoll im Prozessleitsystem (PLS) gegeben werden. Das Rücksetzen von Störmeldungen über die Schaltfläche *RESET* ist nicht möglich. Die RESET-Funktion kann über den DI *Externer RESET* (Klemme -XS1:1,3) oder den DI *RESET-Tür-Taster* ausgeführt werden.

Die START/STOP-Befehle können ausschließlich von externen Steuersignalen über die digitalen Eingänge (DI) der I/O-Schnittstelleneinheit gegeben werden. Das Rücksetzen von Störmeldungen über die Schaltfläche *RESET* ist nicht möglich. Die RESET-Funktion kann über den DI *Externer RESET* oder den DI *RESET-Tür-Taster* ausgeführt werden.

VORGABE SOLLFREQUENZ

Lokale Bedienung (HMI)

Fernbedienung (PLS)

Fernbedienung (DI)

Parameter:

Modus für Sollwertvorgabe

Dieser Parameter definiert den *Modus (Methode) für die Vorgabe der Sollfrequenz* am FU-Ausgang.

HINWEIS

Für diesen Parameter kann die Einstellung auch während des FU-Betriebes verändert werden.

Einstelloptionen:

Sollwertvorgabe über HMI

Sollwertvorgabe über Al

Der Sollwert für die FU-Ausgangsfrequenz wird direkt über die Bedieneinheit (HMI) eingegeben (Vor-Ort-Bedienung).

Der Sollwert für die FU-Ausgangsfrequenz wird über das analoge Eingangssignal (Al 1: f/n Sollwertvorgabe) an der I/O-Schnittstelleneinheit (-XS18) und den Einstellungen der Parameter *Maximale Frequenz* und *Minimale Frequenz* bestimmt.

- Bei *offenem* f/n Regelkreis reicht das analoge Sollwertsignal von 0 Hz bis zur höchsten, zulässigen Frequenz.
- Im *geschlossenen* f/n Regelkreis reicht das analoge Sollwertsignal von 0% bis 100%.

Sollwertvorgabe über DI

Der Sollwert für die FU-Ausgangsfrequenz wird über die binären Zustände der drei digitalen Eingänge zur Vorgabe der Fest-Sollfrequenz und der mit Parameter *Sollwert-vorgabe über DI* eingestellten *Drehzahlsektion* bestimmt.

	l ł
=	[
=	F
	. /

HINWEIS

Diese Option zur Sollwertvorgabe gilt nur für den Betrieb im *offenen* f/n Regelkreis; für den Betrieb im *geschlossenen* f/n Regelkreis wird sie *nicht* verwendet.

Sollwertvorgabe über PLS

Der Sollwert für die FU-Ausgangsfrequenz wird über das Kommunikationsprotokoll des Prozessleitsystems eingestellt. Der maximal mögliche Frequenzsollwert ist durch den mit Parameter *Maximale Frequenz* eingestellten Wert definiert.

n/f Regelkreis

Parameter:

n/f Regelkreis

Dieser Parameter definiert den Modus für den n/f Regelkreis.

Einstelloptionen:

Offener Regelkreis

Die Vorgabe der Sollfrequenz erfolgt nach dem mit Parameter *Modus für Sollwertvorgabe* eingestellten Modus:

- Lokale Eingabe (HMI) oder
- Analogeingang (AI) oder
- Digitale Eingänge (DI) oder
- Prozessleitsystem (PLS).

Geschlossener Regelkreis

Die Vorgabe der Sollfrequenz erfolgt durch den internen PID-Regler der Steuereinheit.

FUNKTIONSPARAMETER 2

Sofern nicht anders angegeben, können die *Funktionsparameter 2* geändert werden, während der Frequenzumrichter in Betrieb ist.

AuCom	MS-Bere	eit 🌔	FU Bereit		FUB	etrieb	Stör	rung	D	20:05:51 09 / 03 / 2023
Funktion	nsparam	eter	2							FU-Monitor
Auflösung d Sollfrequer	er 0.10	Hz	DI: Sollfrequenz f	1 10.00	Hz	PID-R frequen:	egler (Soll- z): P-Verst.	10.00		
Ausblendfrequer 1	UZ 51.00	Hz	DI: Sollfrequenz f	2 30.00	Hz	PID-R frequ	egler (Soll- ienz): I-Zeit	10.00	Min.	Trend- rekorder
Ausblendfrequer	^{1Z} 51.00	Hz	DI: Sollfrequenz f	3 50.00	Hz	PID-R f reque	egler (Soll- nz): D-Zeit.	0.00	Min.	Parameter
Ausblendfrequer 2	U 51.00	Hz	AI 1 (f/n Soll-Wert Messbereich-Ende	20.00	mA	Filte	Zeit bis erreinigung	30	ħş	
Ausblendfrequer 2	0 51.00	Hz	AI 1 (f/n Soll-Wert Messbereich-Anfang	4.00	mA	N	-Lüfter achlaufzeit	30	Min.	Ereignis- rekorder
FU-Eingangsspre Korrektur-Fakt	g.: or 100	%	AI 2 (f/n Ist-Wert Messbereich-Ende	20.00	mA					Leistungs-
Max. zul. MS Netzausfalldau	6- er 1	s	AI 2 (f/n Ist-Wert Messbereich-Anfang	4.00	mA					zellen:Status
					Vo	rherige Seite	6/7	Vächste S	Seite	Weitere Einstellungen

Abb. 4-78 Hauptmenü: Parameter – Funktionsparameter 2

Parameterübersicht

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstellbereich		
Genauigkeit Sollfrequenz					
Auflösung der Sollfrequenz	0,10	Hz	0,01 1,00 Hz		
Ausblendbereiche von Motorfrequenzen					
Ausblendfrequenz 1 U	0,00	Hz	0,00 80,00 Hz		
Ausblendfrequenz 1 0	0,00	Hz	0,00 80,00 Hz		
Ausblendfrequenz 2 U	0,00	Hz	0,00 80,00 Hz		
Ausblendfrequenz 2 0	0,00	Hz	0,00 80,00 Hz		
Messwertanpassung FU-Eingangsspannung					
FU-Eingangsspng.: Korrekturfaktor	50	-	50 200 %		
MS-Netzausfall					
Max. zul. MS-Netzausfalldauer	1	S	1 100 s*		
Vorgabe feste Sollfrequenz					
DI Sollfrequenz f1	10,00	Hz	0,00 80,00 Hz		
DI Sollfrequenz f2	30,00	Hz	0,00 80,00 Hz		
DI Sollfrequenz f3	50,00	Hz	0,00 80,00 Hz		
Analoge Eingänge					
AI 1 (f/n Soll-Wert):	20,00	mA	10,00 25,00 mA		
Messbereich-Ende					
AI 1 (f/n Soll-Wert):	4,00	mA	0,00 8,00 mA		
Messbereich-Anfang					
AI 2 (f/n Ist-Wert):	20,00	mA	10,00 25,00 mA		
Messbereich-Ende					
AI 2 (f/n Ist-Wert):	4,00	mA	10,00 25,00 mA		
Messbereich-Anfang					

* 100 s ≙ unverzögerte FU-Abschaltung

Tab. 4-16 Funktionsparameter 2 - Parameterübersicht

Parameterbeschreibung

GENAUIGKEIT SOLLFREQUENZ

Parameter:

Auflösung der Sollfrequenz

Einstellbereich: 0,01 ... 1,00 Hz Dieser Parameter definiert die *Schrittweite*, mit der der Frequenzsollwert verändert werden kann.

AUSBLENDBEREICHE VON MOTORFREQUENZEN Für bestimmte Anwendungen existieren Frequenzen, in denen der Antrieb nicht dauerhaft betrieben werden darf. Der FU berücksichtigt dies durch zwei einstellbare Frequenzbänder (Ausblendbereiche), die einen dauerhaften Betrieb innerhalb dieser Frequenzbereiche verhindern. Auf diese Weise können Eigenresonanzen des mechanischen Systems vermieden werden.

Um einen Ausblendbereich zu definieren, müssen für jeden Ausblendbereich zwei Parameter einstellt werden:

- Ausblendfrequenz x O, für die obere Grenzfrequenz des Ausblendbereichs und
- Ausblendfrequenz x U, für die untere Grenzfrequenz des Ausblendbereichs.
- Innerhalb eines Ausblendbereichs muss der obere Grenzfrequenzwert größer sein als der untere Grenzfrequenzwert.
- Werden zwei Ausblendfrequenzpunkte definiert, müssen die Parametereinstellwerte für den Ausblendbereich 2 größer sein als die Parametereinstellwerte für den Ausblendbereich 1.

Hochlauf- und Beschleunigungsvorgang:

Fällt die Sollfrequenz während des *Hochlaufs* oder *Abbremsen des Motors* in einen definierten Ausblendbereich, setzt der FU den Sollwert automatisch auf den mit Parameter *Ausblendfrequenz 10* bzw. *Ausblendfrequenz 20* eingestellten Wert (obere Grenzfrequenz).

Ausblendbereich 1 Ē Untere Ausblendfrequenz 1 U

Die folgenden vier Parameter definieren zwei Ausblendbereiche für unerwünschte Betriebsfrequenzen:

	Parameter:	Ausblendfrequenz 1 U
Einstellbereich: 0,00 80,00 Hz	Dieser Parameter definiert die <i>untere</i> Grenze des sprungen werden soll.	<i>ersten</i> Frequenzbereiches, der über-
	Parameter:	Ausblendfrequenz 1 0
Einstellbereich: 0,00 80,00 Hz	Dieser Parameter definiert die <i>obere</i> Grenze des sprungen werden soll.	ersten Frequenzbereiches, der über-
	Parameter:	Ausblendfrequenz 2 U
Einstellbereich: 0,00 80,00 Hz	Dieser Parameter definiert die <i>untere</i> Grenze des sprungen werden soll.	<i>zweiten</i> Frequenzbereiches, der über-
	Parameter:	Ausblendfrequenz 1 U

Einstellbereich: 0.00 ... 80.00 Hz

Dieser Parameter definiert die obere Grenze des zweiten Frequenzbereiches, der übersprungen werden soll.

MESSWERTANPASSUNG FU-EINGANGSSPANNUNG

Parameter:

FU-Eingangsspng.: Korrekturfaktor

Dieser Parameter definiert den Korrekturfaktor für den Messwert der FU-Eingangsspannung.

	HIN
\equiv	Der Funl
	als F

WEIS

Korrekturfaktor für die FU-Eingangsspannung wirkt auf sämtliche ktionen und Algorithmen des FU, welche die FU-Eingangsspannung Rechengröße verarbeiten!

- Einstellbereich: 50 ... 200 %
- ▶ Wenn der angezeigte Messwert der FU-Eingangsspannung kleiner ist als Messwert von einer Referenzanzeige, ist die Parametereinstellung schrittweise zu erhöhen, bis der im FU-Monitor angezeigte Messwert Eingangsspannung der Referenzanzeige entspricht.
- Wenn der angezeigte Messwert der FU-Eingangsspannung größer ist als Messwert ≻ von einer Referenzanzeige, ist die Parametereinstellung schrittweise zu verringern, bis der im FU-Monitor angezeigte Messwert Eingangsspannung der Referenzanzeige entspricht.

MS-NETZAUSFALL

Parameter:

Max. zul. MS-Netzausfalldauer

Einstellbereich:
1 100 s

Dieser Parameter definiert das Zeitfenster für eine maximal zulässige Netzausfalldauer, in dem der FU einen automatischen Neustart durchführen kann, sofern kein STOP-Befehl aktiv ist.

	HI	W
\equiv	\blacktriangleright	Di Al
	۶	Di de

EIS

- ieser Parameter gilt nur für die Parametereinstellung utomatikstart nach MS-Ausfall = Aktiviert.
- ie Einstellung Max. zul. MS-Netzausfalldauer = 100 s deaktiviert en MS-Spannungsausfallschutz und deaktiviert den automatischen Neustart.
- Für diesen Parameter kann die Einstellung nicht während des FU-Betriebes verändert werden.
- Für Informationen über die Reaktion des FU auf einen MS-Netz- \triangleright ausfall, s. Kapitel "5.1.8 "MS-Netzausfall"

Vorgabe feste SOLLFREQUENZ

Die folgenden drei Parameter definieren die Fest-Sollfrequenzen die für die Bestimmung der FU-Ausgangsfrequenz verwendet werden, sofern die Sollwertvorgabe über die Binärkodierung von drei digitalen Eingängen gesteuert wird.

-	HINWEIS
_	

Dieser Parameter ist nur gültig für die Parametereinstellung \triangleright Modus für Sollwertvorgabe = Sollwertvorgabe über DI.

DI Sollfrequenz f1

DI: Sollfrequenz f2

- Für weiterführende Informationen siehe Beschreibung des Parameters Sollwertvorgabe über DI.
- Für diesen Parameter kann die Einstellung nicht während des FU-Betriebes verändert werden.

Parameter:

Einstellbereich: 0,00 ... 80,00 Hz Dieser Parameter definiert den *Fest-Sollwert f1* für den digitalen Eingang *Sollfrequenz 1* (Anschlussklemme -XS1:1,7).

Parameter:

Einstellbereich: 0,00 ... 80,00 Hz

Dieser Parameter definiert den *Fest-Sollwert f2* für den digitalen Eingang *Sollfrequenz 2* (Anschlussklemme -XS1:1,6).

Einstellbereich:
0,00 80,00 Hz

 Parameter:
 DI: Sollfrequenz f3

 Dieser Parameter definiert den *Fest-Sollwert f3* für den digitalen Eingang *Sollfrequenz 3*

(Anschlussklemme -XS1:1,5).

ANALOGE EINGÄNGE Die folgenden vier Parameter definieren jeweils den *Messbereichs-Anfang* und das M*essbereichs-Ende* der Übertragungskennlinien für die *Analogeingänge Al1* und *Al2*. Der Anfangspunkt sowie der Endpunkt der Übertragungskennlinie werden jeweils durch ein Wertepaar definiert:

	Al-Messbereich	Messwertskala
Wertepaar Anfangspunkt:	Parameter	Definierter Skalenanfang
Wertepaar Endpunkt:	Parameter	Definiertes Skalenende

Abb. 4-80 Analogeingang Al 1 – Übertragungskennlinie: f/n-Soll-Wert

Abb. 4-81 Analogeingang AI 2 – Übertragungskennlinie: f/n-lst-Wert

Parameter: AI 1 (f/n Soll-Wert): Messbereich-Ende

Einstellbereich: D 10,00 ... 25,00 mA s

Einstellbereich:

0,00 ... 8,00 mA

Dieser Parameter definiert den *maximalen Eingangssignalstrom* als *Messbereich-Ende* des *Analogeingangs Al 1*, der für die mit Parameter *Maximale Frequenz* eingestellte Sollfrequenz (Messwertskala-Ende) fließen soll.

Parameter: AI 1 (f/n Soll-Wert): Messbereich-Anfang

Dieser Parameter definiert den *minimalen Eingangssignalstrom* als *Messbereich-Anfang* des *Analogeingangs Al 1*, der für eine *minimale Sollfrequenz von 0Hz* (Messwertskala-Anfang) fließen soll.

	Parameter:	AI 2 (f/n Ist-Wert): Messbereich-Ende
Einstellbereich: 10,00 25,00 mA	Dieser Parameter definiert den <i>maximalen Ein</i> les <i>Analogeingangs AI2</i> , der für die mit Param Frequenz (Messwertskala-Ende) fließen soll	ngangssignalstrom als Messbereich-Ende neter Maximale Frequenz eingestellte Ist-

Parameter:

Al 2 (f/n Ist-Wert): Messbereich-Anfang

Einstellbereich: 10,00 ... 25,00 mA Dieser Parameter definiert den *minimalen Eingangssignalstrom* als *Messbereich-Anfang* des *Analogeingangs Al2*, der für eine *minimale Ist-Frequenz von OHz* (Messwertskala-Anfang) fließen soll.

PID-REGLER: F/N REGELKREIS

Für die Parametereinstellung *Regelkreis für Sollfrequenz* = *Geschlossener Regelkreis*, wird der *Drehzahlsollwert* durch den internen PID-Regler berechnet.

1	
_ L	

≻	Die folgenden drei PID-Parameter gelten nur für die Parameter-
	einstellung Regelkreis für Sollfrequenz = Geschlossener Regel-
	kreis.

Für diesen Parameter kann die Einstellung *nicht* während des FU-Betriebes verändert werden.

HINWEIS

Filter-Reinigungsintervall

Lüfter-Nachlaufzeit

 Für weitere Informationen wenden Sie sich bitte an den Hersteller.

Die Einstellung des f/n PID-Reglers erfolgt über die folgenden drei Parameter:

	Parameter:	PID-Regler (f/n Regelkreis): P-Verst.
Einstellbereich: 0,00 50,00	Dieser Parameter definiert den Proporti	<i>ionalitätskoeffizient</i> der P-Regelung.
	Parameter:	PID-Regler (f/n Regelkreis): I-Zeit
Einstellbereich: 0,01 20,00 min	Dieser Parameter definiert die Integralz	<i>eit</i> der I-Regelung.
	Parameter:	PID-Regler (f/n Regelkreis): D-Zeit
Einstellbereich: 0,01 20,00 min	Dieser Parameter definiert die Differenz	<i>zeit</i> der D-Regelung.

FU-Wartung

Einstellbereich: 15 ... 30000 Tage Dieser Parameter definiert das *Zeitintervall*, in dem die Alarmmeldung *Alarm: Luftfilter reinigen* zur Reinigung der Lüfter-Filter zyklisch angezeigt wird.

1		
	<u> </u>	
	-	

Parameter:

HINWEIS

Diese Erinnerungsfunktion gilt nur für die Parametereinstellung Meldung: Filter reinigen = Erinnern.

FU-KÜHLUNG

Parameter:

Einstellbereich: 0 ... 30 min Dieser Parameter definiert die *Nachlaufzeit für die Lüfter* eingestellt. Die Nachlaufzeit startet direkt nach der Ausschaltung des FU-Betriebs und seiner Rückkehr in den Bereitschaftszustand (Standby).

1	

HINWEIS

Um den Nachlauf zu gewährleisten, muss die Hilfsspannung für die Lüfterversorgung auch nach Ausschaltung des FU-Betriebs vorhanden sein.

FUNKTIONSPARAMETER 3

Sofern nicht anders angegeben, können die *Funktionsparameter 3* geändert werden, während der Frequenzumrichter in Betrieb ist.

AuCom	MS Bereit	FU Berei	t 🔘 FUB	etrieb	Störung		20:05:51 09 / 03 / 2023
Fun	ktionsparameter 3					5	FU-Monitor
Umschaltfrei- gabe: FU<->Netz	Deaktiviert	~	Aktiv er Motor- Parametersatz	Motor-Parametersa	tz 1 🗸	-	
Kühlmethode	Luftgekühlt	~	PLS-Kommunik.: Protokollty p	Modbus	~		Trend- rekorder
Manuelle Lüftersteuerung	STOP	~	Baudrate	9600	\checkmark		Parameter
MS-Zuschaltung bei Alarm möglich	Deaktiviert	~	FU-Adresse	1	~		
Offene Schranktür : Störungsauswahl	Alarm	~					Ereignis- rekorder
Meldung: Filter reinigen	Ignorieren	~					Leistungs- zellen:Status
Synchr.Umschltg. Motor-Transfer	Transfer zum Netz	~				F	
Rücksetzen	auf Standardwerte		Vo	orherige Seite 7/	7 Nächste Seite		Weitere Einstellungen

Abb. 4-82 Hauptmenü: Parameter – Funktionsparameter 3

PARAMETERÜBERSICHT

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstelloptionen
	Synchrone Umsch	naltung	
Umschaltfrei- gabe: FU<->Netz	Deaktiviert	-	Deaktiviert / Aktiviert
	FU-Kühlunç	g	
Kühlmethode	Luftgekühlt	-	Luftgekühlt / Wassergekühlt
Manuelle Lüftersteuerung	STOP	-	STOP
			START
	Alarm-/Fehlermel	dungen	
MS-Zuschaltung bei Alarm möglich	Deaktiviert	-	Deaktiviert / Aktiviert
Offene Schranktür:	Alarm	-	Alarm/
Störungsauswahl			Fehler
	FU-Kühlunç	g	
Meldung:	Ignorieren		Ignorieren /
Filter reinigen			Erinnern
	Synchrone Umsch	naltung	
Synchr.Umschltg.:	Transfer zum		Transfer zum Netz /
Motor-Transfer	Netz		Transfer zum Motor
	Motor-Paramete	rsätze	
Aktiver Motor-	Motor-	-	Motor-Parametersatz 1 /
Parametersatz	Parametersatz 1		Motor-Parametersatz 2 /
			Motor-Parametersatz 3 /
	Deserved		שטנטו ד מו מווזכנכו שמוע 4
	Prozessieitsysten	1 (PLS)	
PLS-Kommunik.:	Modbus	-	Modbus/

Parametername	Einstellwert (Voreinstellung)	Einheit	Einstelloptionen
Protokolltyp			Profibus / Profinet
Baudrate	9600	Baud	1200 / 4800 / 9600 / 19200 / 38400
FU-Adresse	1	-	247

: Funktionsschaltflächen

 Tab. 4-18
 Funktionsparameter 3 - Parameterübersicht

Parameterbeschreibungen

SYNCHRONE UMSCHALTUNG

Parameter: Umschaltfreigabe: FU<->Netz

Dieser Parameter aktiviert/deaktiviert die *Freigabe zur Aktivierung der synchronen Umschaltung* des Motors zwischen FU und MS-Netz über den digitalen Eingang (DI) *Start Synchrone Umschaltg.* (Anschlussklemmen -XS2:1,8) der I/O-Schnittstelleneinheit (SPS).

&

DI: "Start Synchrone Umschaltg."

Parameter: "Umschaltfreigabe: FU<->Netz"

Abb. 4-83 Blockschaltbild – Freigabe zur synchronen Umschaltung FU<->Netz über DI

Einstelloptionen:

Die Freigabe zur synchronen Umschaltung FU<->Netz über den DI ist *deaktiviert*.

Die Freigabe zur synchronen Umschaltung FU<->Netz über den DI ist *aktiviert*. Es kann jetzt über den digitalen Eingang die synchrone Umschaltung des Motors zwischen FU und MS-Netz gestartet werden:

- DI ist inaktiv: keine Funktion
- DI ist aktiv: Synchrone Umschaltung FU<->Netz startet.

=
_

HINWEIS

Die Umschaltrichtung (*Transfer zum Netz* oder *Transfer zum FU*) hängt von der Einstellung des Parameters *Synchr. Umschltg.: Motor-Transfer* ab.

FU-KÜHLUNG

Deaktiviert

Aktiviert

Parameter:

Kühlmethode

Dieser Parameter definiert die Kühlmethode für den FU.

Einstelloptionen:

Luftgekühlt Wassergekühlt Kühlung des FU durch Ventilatoren

wasserkühlung des FU

Parameter:

Manuelle Lüftersteuerung

Mit diesen Funktionsschaltflächen können die Lüfter manuel/ für Service- und Inbetriebnahmezwecke ein- und ausgeschaltet werden.

HINWEIS

- Die Funktionsschaltflächen gelten für beide FU-Modi: Test und Betrieb.
- Während des FU-Betriebs übernimmt die FU-Steuerung die Steuerung der Lüfter.
- Während der FU-Bereitschaft (FU-Modus = Test und FU-Modus = Betrieb) ist die Steuerung der Lüfter über die Funktionsschaltflächen möglich.

Funktionsschaltflächen:

Die laufenden Kühlventilatoren werden ausgeschaltet.

Die Kühlventilatoren werden eingeschaltet.

Alarm-/Fehlermeldungen

Parameter:

MS-Zuschaltung bei Alarm möglich

Dieser Parameter definiert, ob eine aktive Alarmmeldung:

- den FU auslöst (FU-Betrieb) bzw. eine Zuschaltung der Mittelspannung blockiert (FU-Bereitschaft (Standby)), oder
- den FU-Betrieb aufrecht erhält bzw. eine Zuschaltung der Mittelspannung erlaubt (FU-Bereitschaft (Standby)).

Einstelloptionen:

Deaktiviert

Ein aktive Alarmmeldung schaltet den FU-Betrieb ab bzw. blockiert die Zuschaltung der Mittelspannung.

Aktiviert

Alarm

Ein aktive Alarmmeldung schaltet den FU-Betrieb nicht ab bzw. blockiert nicht die Zuschaltung der Mittelspannung.

Parameter:

Offene Schranktür: Störungsauswahl

Dieser Parameter definiert das Verhalten des FU beim Öffnen der Schranktür während des FU-Betriebs. Diese Einstellung gilt sowohl für die Tür des Leistungszellenschranks als auch für die Tür des Transformatorschranks.

Einstelloptionen:

Beim Öffnen einer Tür des Zellen- bzw. Trafoschranks wird die Meldung:

- Alarm: Türalarm Zellenschrank bzw.
- Alarm: Türalarm Trafoschrank

generiert und gemeldet. Der FU bleibt in Betrieb.

WARNUNG

Gefahr durch elektrischen Schlag!

Für die Parametereinstellung Offene Schranktür: Störungsauswahl = Alarm wird beim Öffnen einer Tür des Leistungszellenschranks während des FU-Betriebs oder der FU-Betriebsbereitschaft der FU nicht abgeschaltet!

- Niemals bei FU-Bereitschaft oder während des FU-Betriebs eine Tür des Leistungszellen- oder Transformatorschranks öffnen.
- Vor dem Öffnen einer Tür des Leistungszellen- oder Transformatorschranks ist der FU immer von der Mittelspannung freizuschalten und zu erden.

Fehler

Beim Öffnen einer Tür des Zellen- bzw. Trafoschranks wird die Meldung:

- Fehler: Türalarm Zellenschrank bzw.
- Fehler: Türalarm Trafoschrank

generiert und gemeldet. Der FU wird abgeschaltet.

Parameter:

Meldung: Luftfilter reinigen

Dieser Parameter aktiviert/deaktiviert die *Ausgabe* der Erinnerungsmeldung *Alarm: Luftfilter reinigen*.

Einstelloptionen:

Erinnern

Die Erinnerungsmeldung wird gemäß dem mit Parameter *Filter-Reinigungsintervall* eingestellten Zeitintervall zyklisch ausgegeben.

Ignorieren

Es wird *keine* Erinnerungsmeldung ausgegeben.

SYNCHRONE UMSCHALTUNG

Parameter:

Synchr. Umschltg.: Motor-Transfer

Dieser Parameter definiert die *Transferrichtung* für die Funktion *Synchrone Umschaltung* eines Motors.

Einstelloptionen:

Transfer zum Netz Transfer zum FU Der Motor wird vom FU zum MS-Netz geschaltet.

Der Motor wird vom MS-Netz zum FU geschaltet.

Motor-Parametersätze

Der FU kann vier verschiedene Motor-Parametersätze speichern, um z. B. den Betrieb mehrerer, unterschiedlicher Motoren zu unterstützen oder einen einzelnen Motor in verschiedenen Modi zu betrieben.

Jeder Parametersatz umfasst die Motorparameter 1 und Motorparameter 2.

Parameter:

Aktiver Motor-Parametersatz

Dieser Parameter definiert den aktiven Motor-Parametersatz für den FU.

1		
	=	
	=	
	—	

HINWEIS

Für diesen Parameter kann die Einstellung *nicht* während des FU-Betriebes verändert werden.

Einstelloptionen:

Motor-Parametersatz 1	
Motor Daramatorsatz 2	

Der FU verwendet die in Motor-Parametersatz 1 gespeicherten Parametereinstellungen.

Der FU verwendet die in Motor-Parametersatz 2 gespeicherten Parametereinstellungen.

Motor-Parametersatz 3

Motor-Parametersatz 4

PROZESSLEITSYSTEM (PLS)

Der FU verwendet die in Motor-Parametersatz 3 gespeicherten Parametereinstellungen.

Der FU verwendet die in Motor-Parametersatz 4 gespeicherten Parametereinstellungen.

Für die Kommunikation des FU mit einem Prozessleitsystem verfügt der MVH 2.0 über verschiedene Protokolltypen.

Mit den folgenden drei Parametern kann die Steuereinheit an das gewünschte Kommunikationsprotokoll angepasst werden.

Betriebes nicht verändert werden. Der FU ist im lokalen Prozessleitsystem immer ein Slave; das Prozessleitsystem ist der Master.

Parameter:

PLS-Kommunik .: Protokolltyp

Dieser Parameter definiert das Kommunikationsprotokol/für den FU im lokalen Prozessleitsystem (PLS).

Einstelloptionen:

Modbus

Profibus

PROFINET

Der FU unterstützt den Protokolltyp Modbus RTU (Schnittstelle: RS485)

Der FU unterstützt den Protokolltyp Profibus DP (auf Anfrage)

Der FU unterstützt den Protokolltyp Profinet (auf Anfrage)

Parameter:

Baudrate

Dieser Parameter definiert die Schrittgeschwindigkeit (Symbolrate) bei der Datenübertragung.

Definition Symbolrate:

Anzahl der übertragenen Symbole pro Sekunde, Einheit: [Baud], Abkürzung: [Bd]

	l F
=	D
—	g

IINWEIS

vie Baudrate ist auf der Sende- und auf der Empfängerseite immer leich einzustellen!

Einstelloptionen:

1200	
4800	
9600	
19200	
38400	

Baud Baud Baud Baud

Baud

Parameter:

FU-Adresse

Einstellbereich: 1 ... 247 Dieser Parameter definiert die für den FU gültige Adresse seiner RS485-Schnittstelle (Anschlussklemmen -XS17:1,2,3) für das Kommunikationsprotokoll Modbus RTU.

4.6.4 MENÜ: EREIGNISREKORDER

Der Ereignisspeicher protokolliert Ereignisse als:

- Betriebsmeldungen,
- Alarmmeldungen und
- Fehlermeldungen,

die vom FU erfasst bzw. generiert werden.

Die Speicherung der Meldungen erfolgt nach dem FIFO-Prinzip (First-In-First-Out). Dies bedeutet, dass bei Erreichen der maximalen Anzahl von gespeicherten Ereignissen das nächste, neue Ereignis das Älteste überschreibt.

AIX	Com	MS Be	Preit FU Bereit	FL/ Betri	eb	Störung	20:05:51 09 / 03 / 2023
Nr.	Zeit		Ereignis	FU-Ausg f[Hz]	FU-Ausg., U[V]	FU-Ausg.: I[A]	
1	2023-03-29	10:56:56	Lokaler Stopbefehl	0.00	0.00	0.00	
2	2023-03-29	10:04:34	Lokaler Startbefehl	0.00	0.00	0.00	Trend
3	2023-03-29	10:03:45	FU Rücksetzen	0.00	0.00	0.00	rekorder
4	2023-03-29	10:01:22	Testmodus MS – EIN Verboten	0.00	0.00	0.00	
5	2023-03-29	10:00:19	Rücksetzen auf Werkseinstellunge	n 0.00	0.00	0.00	Parameter
6	2023-03-29	09:53:23	FU Rücksetzen	0.00	0.00	0.00	
7	2023-03-29	09:21:56	Lüfter Alarm	0.00	0.00	0.00	Ereignis-
8	2023-03-29	09:06:56	Fehler Erregersystem	0.00	0.00	0.00	rekorder
9	2023-03-29	08:56:50	Fern - Startsignal	0.00	0.00	0.00	
10	2023-03-29	07:47:33	Türalarm Trafoschrank	0.00	0.00	0.00	Leistungs-
11	2023-03-29	07:47:33	Türalarm Zellenschrank	0.00	0.00	0.00	
<						>	Weitere
Ereign Exp	isprotokoll ortieren	Ereign Lö	isprotokoll ischen			Einstellungen	Einstellungen

Abb. 4-84 Hauptmenü – Ereignisrekorder

- 1 *Nr.*: Laufende Nummer des Ereignisses
- 2 Zeit: Zeitstempel des Ereignisses
- 3 *Ereignis*: Klartext des Ereignisses
- *FU-Ausg.: f[Hz]*: Messwert der FU-Ausgangsfrequenz zum Zeitpunkt der Ereignis-Aufzeichnung
- 5 *FU-Ausg.: U[V]*: Messwert der FU-Ausgangsspannung zum Zeitpunkt der Ereignis-Aufzeichnung
- *FU-Ausg.: I[A]*: Messwert des FU-Ausgangsstroms zum Zeitpunkt der Ereignis-Aufzeichnung
- *Einstellungen*: Parametergruppe zur Definition eines Zeitraums für den die Ereignisse angezeigt bzw. gespeichert werden sollen
 - Ereignisprotokoll löschen

8

9 Ereignisprotokoll exportieren

LAUFENDE NUMMER

Jedem Ereigniseintrag ist eine laufende Nummer zugeordnet. Das zuletzt eingetragene (jüngste) Ereignis befindet sich immer in der ersten Zeile des Ereignisspeichers und weist die laufende Nummer "1" aus. Der zweitletzte Ereigniseintrag befindet sich in der zweiten Zeile und weist die laufende Nummer "2" aus, usw. Bei jedem neuen Ereigniseintrag rutschen sämtliche vorangegangenen Einträge um eine Zeile nach unten, so dass sich ihre laufenden Nummern jeweils um eine Stelle erhöht.

SEDIENUNG UND ANZEIGEN	MOTOR CONTROL SPECIALISTS			
Zeitstempel	Jedem Ereigniseintrag ist eine Zeitstempel mit Datum und Uhrzeit zu dem Zeitpunkt zugeordnet, zu dem die Ereignismeldung von der Steuereinheit generiert wurde.			
Ereignisse - Klartext der Meldungen	 Zu jedem Ereigniseintrag wird in der Spalte <i>Ereignis</i> der Klartext der Meldung angegeb Der Klartext weist auf die Ursache des Ereigniseintrages hin, welche entweder mit ei <i>Alarmmeldung</i>, einer <i>Fehlermeldung</i> oder einer <i>Betriebsmeldung</i> korreliert. 			
	 KAPITELVERWEIS Die vollständigen Listen mit den verfügbaren Alarmmeldungen und Fehlermeldungen siehe Kapitel "7 Instandsetzung". 			
Betriebsmesswerte	Sofern sich der FU in <i>Betrieb</i> befindet oder der virtuelle Motor im <i>Testmodus</i> gestartet wurde, werden die folgenden <i>Betriebsmesswerte</i> als <i>Schnappschuss</i> zum Zeitpunkt der Erfassung eines registrierten Ereignisses aufgezeichnet:			
	Messwert der FU-Ausgangsfrequenz [Hz]			
	Messwert der FU-Ausgangsspannung [V], nur im FU-Betrieb			
	Messwert der FU-Ausgangsstrom [A], nur im <i>FU-Betrieb</i>			
Schaltfläche: Ereignisprotokoll löschen	Das Betätigen der Schaltfläche Ereignisprotokoll löschen löscht sämtliche Einträge im Ereignisspeicher.			
	HINWEIS Die Funktionsschaltfläche <i>Ereignisprotokoll löschen</i> steht nur der Benutzerebene <i>Ingenieur</i> oder höher zur Verfügung.			
Schaltfläche: Ereignisprotokoll exportieren	Mit der Schaltfläche <i>Ereignisprotokoll exportieren</i> kann das aktuelle Ereignisprotokoll des Ereignisrekorders gespeichert werden.			
Parametermenü:	Das Betätigen dieser Schaltfläche öffnet das Parametermenü Den Umfang der Zeit			

EINSTELLUNGEN

stellen zur Festlegung des Beginns des Anzeigebereiches der aufgezeichneten Ereignisse sowie des Zeitstempels. Hierfür stehen vier verschiedene Konfigurations-Modi zur Verfügung:

- Alle gespeicherten Einträge •
- Die letzte Zeit •
- Festgelegte Zeit •
- Angegebene Zeit •

Die folgenden Parameter definieren jeweils den Zeitpunkt, ab dem die Einträge angezeigt werden sollen:

Den Umfang der Zeit stellen	×
Alle gespeicherten Einträge Die letzte Zeit	OK Abbrechen
10 Minute	🗹 Jahr
○ Festgelegte Zeit Dieser Tag	Monat
Punkt der Zeitabtrennung 0	🗹 Tag
	Stunde
2023 Jahr 5 Monat 8 Tag	Minute
11 Stunde 32 Minute 9 Sekunde	Sekunde

Abb. 4-85 Konfiguration des Anzeigezeitraums und Zeitstempels

aktiviert
 deaktiviert

☑: Datum wird angezeigt□: Datum wird nicht angezeigt

Parameterübersicht

Parametername	Einstellwert	Einstellbereich
	(Voreinstellung)	bzw. Einstelloptionen
A	nzeigezeitraum defini	eren
Alle gespeicherten Einträge	۲	\bigcirc / \bigcirc
Die letzte Zeit	0	○ / ●
(Zahlenwert)	10	0 3.57914e+07 Minute
Festgelegte Zeit	0	○/●
(Filterauswahl)	Dieser Tag	Dieser Tag / Dieser Monat / Diese Woche / Der vorige Tag / Der Vorige Monat / Letzte Woche
Punkt der Zeittrennung	1	0 23 (Dieser Tag) / 1 31 (Diese Woche) / 1 7 (Dieser Monat) / 0 23 (Der vorige Tag) / 1 31 (Der vorige Monat) / 1 7 (Letzte Woche)
Angegebene Zeit	0	○/●
Jahr	(aktuelles Jahr)	1970 2036
Monat	(aktueller Monat)	1 12
Тад	(aktueller Tag)	1 31
Stunde	(aktuelle Stunde	0 23
Minute	(aktuelle Minute)	0 59
Sekunde	(aktuelle Sekunde)	0 59
Anze	ige-Zeitstempel konfi	gurieren
Jahr	Ŋ	
Monat	V	
Tag	$\mathbf{\nabla}$	

Parametername	Einstellwert (Voreinstellung)	Einstellbereich bzw. Einstelloptionen
Stunde	M	
Minute	V	$\Box / arDelta$
Sekunde	V	

Tab. 4-19 Ereignisrekorder - Konfiguration des Anzeigezeitraums

4.6.5 MENÜ: LEISTUNGSZELLEN: STATUS

Dieses Menü zeigt den aktuellen Status der vorhandenen Leistungszellen an.

AuCo	MS Bereit	FL	J Bereit 🚺 FU Be	etrieb	Störung	20:05:51 09 / 03 / 2023
Phase A	Phase A Status Zelle	Phase B	Phase B Status Zelle	Phase C	Phase C Status Zelle	FU-Monitor
A1	Normal	B1	Normal	C1	Normal	
A2	Normal	B2	Normal	C2	Normal	Trend- rekorder
A3	Normal	В3	Normal	C3	Normal	
A4	Normal	B4	Normal	C4	Normal	Parameter
A5	Normal	B5	Normal	C5	Normal	Ereignis- rekorder
A6	Normal	B6	Normal	C6	Normal	
A7	Normal	В7	Normal	C7	Normal	Leistungs- zellen:Status
A8	Normal	B8	Normal	C8	Normal	Waitere
A9	Normal	B9	Normal	C9	Normal	Einstellungen

Abb. 4-86 Hauptmenü – Leistungszellen: Status

Leistungszellen der Phasen A, B und C für das am FU-Ausgang gebildete Drehstromsystem

Statusanzeigen der einzelnen Leistungszellen für die Phasen A, B, und C

SPALTEN: PHASE A, PHASE B, PHASE C Je nach FU-Leistungsklasse werden in den Spalten *Phase A, Phase B* und *Phase C* jeweils die einzelnen Leistungszellen, die in einer Phase vorhanden sind, angezeigt und nummeriert.

SPALTEN: PHASE A STATUS ZELLE, PHASE B STATUS ZELLE, PHASE C STATUS ZELLE Jede einzelne Leistungszelle wird von der FU-Steuereinheit permanent auf ihre Verfügbarkeit überprüft. Der aktuelle Status wird angezeigt.

Status der Leistungszelle	Beschreibung
Normal	Leistungszelle ist nicht defekt
Unbekannter Zustand	Leistungszelle ist defekt

Tab. 4-20 Leistungszellen – Verfügbarkeit

Prüfung der Leistungszellen Unmittelbar nach dem *Einschalten des FU* führt die Steuereinheit für jede Leistungszelle einen *Selbsttest* durch. Sofern sämtliche Leistungszellen den Selbsttest erfolgreich abschließen, wechselt der FU in den Bereitschaftszustand (Standby).

Bei einem *fehlerhaften* Selbsttest oder einem *Ausfall* der Bypass-Einheit einer fehlerhaften Leistungszelle während des Betriebes, erzeugt der FU die Fehlermeldung *Fehler: Leistungszelle* bzw. die Alarmmeldung *Alarm: Leistungszellen-Bypass* für die betroffene Leistungszelle.

4.6.6 MENÜ: WEITERE EINSTELLUNGEN

Die folgende Abbildung zeigt die Struktur des Menüs Weitere Einstellungen.

Menüebene 1	Menüebene 2	Menüebene 3
Weitere Einstellungen		
	Weitere Systeme	
		Überwachung Wasserkühlung Trafoschrank
		Überwachung Kühlungssystem Zellenschrank
		Überwachung Zellen-Bypass- Einheiten
		Temperaturüberwachung
	Vorladesystem	
	Erregersystem Status Erregersystem Erregung Optionen Parametereinstellung Erregersystem	
	Betriebsstunden	
	Versionsinformation	
	Benutzerumgebung	
		Systemeinstellungen
		Passwort ändern
		Benutzer-Login

Tab. 4-21Struktur des Menüs: Weitere Einstellungen

MENÜ: WEITERE SYSTEME

Das Menü Weitere Systeme enthält vier Menüs:

Abb. 4-87 Menü – Weitere Systeme

1 Menü: Überwachung Wasserkühlung Trafoschrank

- Menü: Überwachung Kühlungssystem Zellenschrank
- Menü: Überwachung Zellen-Bypass-Einheiten
- 4 Menü: Temperaturüberwachung

2

ß

Menü: Überwachung Wasserkühlung Trafoschrank

Menü: Überwachung Kühlsystem Zellenschrank

Menü: Überwachung Zellen-Bypass-Einheiten

Dieses Menü zeigt den aktuellen Status für die einzelnen Zellen-Bypass-Einheiten der vorhandenen Leistungszellen an.

Phase A	Phase A Status Zelle	Phase B	Phase B Status Zelle	Phase C	Phase C Status Zelle
A1	Normal	B1	Normal	C1	Normal
A2	Normal	B2	Normal	C2	Normal
A3	Normal	B3	Normal	C3	Normal
A4	Unbekannter Zustand	B4	Normal	C4	Normal
A5	Normal	B5	Normal	C5	Normal
A6	Normal	B6	Normal	C6	Normal
A7	Normal	B7	Normal	C7	Normal
A8	Normal	B8	Normal	C8	Normal
A9	Normal	B9	Normal	C9	Normal

Abb. 4-88 Menü: Überwachung Zellen-Bypass-Einheiten

Leistungszellen der Phasen A, B und C für das am FU-Ausgang gebildete Drehstromsystem

Statusanzeigen der einzelnen Bypass-Einheiten der Leistungszellen für die Phasen A, B, und C

SPALTEN: PHASE A, PHASE B, PHASE C

> SPALTEN: PHASE A STATUS ZELLE, PHASE B STATUS ZELLE, PHASE C STATUS ZELLE

Je nach FU-Leistungsklasse werden in den Spalten *Phase A*, *Phase B* und *Phase C* jeweils die einzelnen Leistungszellen, die in einer Phase vorhanden sind, angezeigt und durchnummeriert.

Jede Bypass-Einheit der einzelnen Leistungszelle wird von der FU-Steuereinheit permanent auf ihre Verfügbarkeit überprüft und klassifiziert. Der aktuelle Status der Klassifizierung wird angezeigt.

Status der Bypass-Einheit	Beschreibung
Normal	Bypass-Einheit der Leistungszelle ist in Ordnung
Unbekannter Zustand	Bypass-Einheit der Leistungszelle ist defekt

Tab. 4-22Zellen-Bypass-Einheiten – Klassifizierung der Verfügbarkeit

Der Status jeder Leistungszellen-Bypass-Einheit wird zyklisch aktualisiert.

Prüfung der Leistungszellen-Bypass-Einheiten

Unmittelbar nach dem *Einschalten des FU* führt die Steuereinheit für jede Leistungszelle jeweils einen *Selbsttest ihrer Bypass-Einheit* durch. Sofern sämtliche Leistungszellen den Selbsttest erfolgreich abschließen, wechselt der FU in den Bereitschaftszustand (Standby).

Bei einem *fehlerhaften* Selbsttest oder einem *Ausfall* der Bypass-Einheit einer fehlerhaften Leistungszelle während des Betriebes, meldet der FU die Alarmmeldung *Alarm: Leistungszellen-Bypass* für die betroffene Leistungszelle (s. Menü Überwachung Zellen-Bypass-Einheiten).

Menü: Temperaturüberwachung

Der FU verfügt über eine optionale Messwerterfassung von bis zu 15 Temperatursensoren:

- 12 Sensoren f
 ür die Motortemperatur (optional: 3 x Simatic-Baugruppen mit je 4 x PT100 Eing
 ängen)
- 3 Sensoren für die Transformatortemperatur (Standard: 1 x Simatic-Baugruppe mit 4 x PT100 Eingängen)

Das Menü Temperaturüberwachung besitzt zwei Menüseiten:

- *Messwerte* im Display des Touchscreen und
- *Einstellungen* bzgl. der Editierung von Temperaturbezeichnungen, der Anzeige im Display des Touchscreen sowie der Parametrierung von Grenzwerten für Alarm und Fehlermeldungen.

Die Menüseite *Messwerte* zeigt die aktuellen Temperaturmesswerte der an den FU angeschlossenen Temperatursensoren.

Abb. 4-89 Temperaturüberwachung – Messwerte

Temperaturüberwachung – Einstellungen Die Parametrierung auf der Menüseite *Einstellungen* wirkt auf die *Anzeigen* der Menüseite Messwerte sowie auf die *Fehlerbehandlung* bei Übertemperatur des Transformators und/oder des Motors.

TEMPERATURÜBERWACHUNG -

MESSWERTE

Temp	Temperaturüberw achung					X				
Me	esswerte	Einstellungen								Einheit: [°C]
	Mic	otor								
N		Name	Alarm	Fehler	AKTV	Nr.	Name	Alarm	Fehler	AKTV
1		TEMP. 1	0.00	0.00	AKTV	2	TEMP. 2	0.00	0.00	AKTV
3	;	TEMP. 3	0.00	0.00	AKTV	4	TEMP. 4	0.00	0.00	AKTV
5	5	TEMP. 5	0.00	0.00	AKTV	6	TEMP. 6	0.00	0.00	AKTV
7		TEMP. 7	0.00	0.00	AKTV	8	TEMP. 8	0.00	0.00	AKTV
Ş		TEMP. 9	0.00	0.00	AKTV	10	TEMP. 10	0.00	0.00	AKTV
1	1	TEMP. 11	0.00	0.00	AKTV	12	TEMP. 12	0.00	0.00	AKTV
	Transfo	ormator					Anzeige-Einstellungen			
1		TEMP. 1	0.00	0.00	AKTV		Messwertanzeige:	12		
2		TEMP. 2	0.00	0.00	AKTV		Messwertanzeige: Trafo-Temperaturen	Ja	~	
3		TEMP. 3	0.00	0.00	AKTV		Direktaufruf über FU-Monitor	Ja	~	

Abb. 4-90 Temperaturüberwachung - Einstellungen

KAPITELVERWEIS

Parameterbeschreibung

Motor / Transformator

Parameter:

Name

Mit diesem Parameter können die *Bezeichnungen* (Namen) der einzelnen *Temperatursensoren* kundenspezifisch geändert werden.

Editierung über Tastaturblock

Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen von Parametereinstellungen (allgemein)".

Abb. 4-91 Editierung über Tastaturblock

Alarm- und Fehlermeldungen

	Alarm	Fehler	AKTV
TEMP. 1	0.00	0.00	AKTV
TEMP. 3	0.00	0.00	AKTV

Abb. 4-92 Beispiel: Auswahl TEMP. 1

Um für eine bestimmte Temperatur die folgenden zwei Parameter *Alarm* und *Fehler*. einzustellen, muss zunächst das entsprechende Aktivierungs-Feld *AKTV* angeklickt werden.

- > Das Feld *AKTV* wird grün hinterlegt.
- Die Ziffern in den Einstellfeldern der Parameter Alarm und Fehler. erscheinen schwarz.
- Zur Einstellung der Grenztemperaturen können jetzt die Felder Alarm und Fehler. ausgewählt (angeklickt) werden.

Die folgende Tabelle gibt die verschiedenen Isolierstoffklassen gemäß IEC 60085, IEC 60034-1 sowie die Grenztemperaturen für die Alarm- und Fehlermeldungen an.

Isolierstoffklasse	Max. zulässige Dauertemperatur bei Nennbetrieb [°C]	Grenztemperatur für <i>Alarm</i> [°C]	Grenztemperatur für <i>Fehler</i> [°C]
В	130	110	120
F	155	130	140
Н	180	155	165

Tab. 4-23	Isolierstoffklassen und Grenztemperaturen

Parameter:

Alarm

Dieser Parameter definiert den Übertemperatur-Grenzwert für die Ausgabe einer Alarmmeldung.

Editierung über Ziffernblock

Abb. 4-93 Editierung über Ziffernblock

KAPITELVERWEIS

KAPITELVERWEIS

Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen von Parametereinstellungen (allgemein)".

Parameter:

Fehler

Dieser Parameter definiert den Übertemperatur-Grenzwertfür die Ausgabe einer Fehlermeldung.

von Parametereinstellungen (allgemein)".

Parametrierung bzw. Editierung siehe Kapitel "4.5.6 Änderungen

Editierung über Ziffernblock

 \triangleright

Abb. 4-94 Editierung über Ziffernblock

ANZEIGE-EINSTELLUNGEN

Einstellbereich: 0 ... 12

Parameter:

Messwertanzeige: Anzahl Motor-Temp.

Dieser Parameter definiert die *Anzahl* der im Display angezeigten *Motor-Temperaturmesswerte.*

Parameter:

Messwertanzeige: Trafo-Temperaturen

Dieser Parameter definiert, *ob* die Trafo-Temperaturmesswerte im Display angezeigt werden sollen *oder nicht*.

Einstelloptionen:

Die Trafo-Temperaturen 1 bis 3 werden nicht auf der Menüseite Messwerte angezeigt.

Die Trafo-Temperaturen 1 bis 3 werden auf der Menüseite Messwerte angezeigt.

Parameter:

Direktaufruf über FU-Monitor

Dieser Parameter aktiviert/deaktiviert die *Schaltfläche für den Direktaufruf* des Menüs *Temperaturüberwachung* auf der Startseite *FU-Monitor*.

Einstelloptionen:

Die Schaltfläche für den Direktaufruf wird nicht angezeigt.

Nein Ja

Die Schaltfläche für den Direktaufruf wird angezeigt.

MENÜ: ERREGERSYSTEM

Wenn der FU für *Synchronmotoren* verwendet wird, ist die Steuerung für eine Erregereinrichtung vorgesehen. Diese bietet die folgenden Funktionen:

- Änderung der Startsequenz des FU und des Erregungssystems, um den Startanforderungen eines *bürstenbehafteten* oder *bürstenlosen* Synchronmotors zu entsprechen.
- Änderung des Felderregerstroms zur Verbesserung des Motor-Leistungsfaktors während des Betriebs.
- Während der *synchronen Umschaltung* auf das Netz kann die synchrone Schaltung durch Änderung des Steuermodus des Felderregerstroms optimiert werden.

HINWEIS

Der Zugriff auf dieses Menü erfolgt nur für Einstellungen des Parameters *FU-Typ* für Synchronmotoren und wenn die Parameter mit der Schaltfläche *Parameter herunterladen* (s. "4.6.3 Menü: Parameter") in der Steuereinheit gespeichert sind.

Dieses Menü ist in drei Bereiche unterteilt:

Erregungsmonitor

1

2

3

Erregungsoptionen

Erregungsmonitor

Status- und Messwertanzeigen sowie Start/Stopp-Steuerung für den Erregungsprozess

ANZEIGEELEMENTE

LED-Statusanzeigen				
LED-Name	Farbcode	Beschreibung		

Bedienung und Anzeigen

Erregung	grau 🔘		Meldesignal aus externem Erregerfeld an SPS: DI (-XS2:1,7) <i>Erregersystem Bereit</i> ist inaktiv.
Bereit	grün 🔘		Meldesignal aus externem Erregerfeld an SPS: DI (-XS2:1,7) <i>Erregersystem Bereit</i> ist aktiv:
Fehler:	grau 🔘		Meldesignal aus externem Erregerfeld an SPS: DI (-XS2:1,5) <i>Erregersystem Fehler</i> ist inaktiv.
Erregersystem	rot	٥	Meldesignal aus externem Erregerfeld an SPS: DI (-XS2:1,5) <i>Erregersystem Fehler</i> ist aktiv:
Erregung	grau 🔘		Meldesignal aus externem Erregerfeld an SPS: DI (-XS2:1,6) <i>Erregersystem Betrieb</i> ist inaktiv.
Betrieb	grün	٥	Meldesignal aus externem Erregerfeld an SPS: DI (-XS2:1,6) <i>Erregersystem Betrieb</i> ist aktiv.

Tab. 4-24Erregungsmonitor – Statusanzeigen

Messwertanzeigen					
Messgröße	Anzeige- bereich	Beschreibung			
Erregerstrom- Sollwert [A]	0,1 1600,0 A	Erregerstromsollwert in Abhängigkeit der Erregerstrom-Regelung			
Erregerstrom- Istwert [A]	0,0 1600,0 A	Erregerstrom-Istwert für die Erregerstrom- Regelung			

Tab. 4-25Erregungsmonitor – Messwertanzeigen für Erregerstrom

Bedienelemente

Manueller Start/Stop Erregung			
Funktionsschaltfläche	Beschreibung		
START	Die Betätigung dieser Funktionsschaltfläche <i>aktiviert</i> den digitalen Ausgang <i>Sync.Motor: Erregung EIN</i> (-XS13:9,10)		
STOP	Die Betätigung dieser Funktionsschaltfläche <i>deakti-</i> <i>viert</i> den digitalen Ausgang <i>Sync.Motor: Erregung EIN</i> (-XS13:9,10)		

Tab. 4-26 Manueller Start/Stop des Erregersystems – Funktionsschaltflächen

ERREGUNGSOPTIONEN

Konfiguration des *Startmodus* und des *Arbeitsmodus* für das Erregersystem.

Parameter

Parametername	Einstellwert (Voreinstellung)	Einstelloptionen
Erreger-Regelung	Deaktiviert	Deaktiviert / Aktiviert
Erreger-Startmodus	ASYNC	ASYNC / SYNC
Arbeitsmodus	Manuell	Manuell / Konstanter Leistungsfaktor
Erregerstrom-Rückmeldung	Nein	Nein / Ja

Tab. 4-27 Erregungsoptionen – Parameter

Parameterbeschreibung

Para	meter:	
ı ara		

Erregungsregelung

Dieser Parameter aktiviert/deaktiviert die Funktion des Erregersystems.

Deaktiviert Aktiviert Die Funktion ist deaktiviert.

Die Funktion ist aktiviert.

Parameter:

Erregungs-Startmodus

Arbeitsmodus

Dieser Parameter definiert die *Anfahrvariante für den Synchronmotor*. Startanforderungen für einen *bürstenbehafteten* oder *bürstenlosen* Synchronmotor.

Der Synchronmotor wird bis zu seiner Nennfrequenz als Asynchronmotor hochgefahren.

Sobald die Nennfrequenz erreicht ist, wird die Erregung zugeschaltet und der Motor zieht

ASYNC

SYNC

Der Synchronmotor wird *sofort* mit eingeschalteter Erregung gestartet.

Parameter:

ben.

sich auf die synchrone Drehzahl.

Dieser Parameter definiert den Arbeitsmodus für die Funktion des Erregersystems.

Manuell

Konstanter Leistungsfaktor Der Motor wird mit dem mit Parameter Leistungsfaktor-Sollwert eingestellten Wert betrieben.

Der Motor wird mit dem mit Parameter Erregerstrom-Sollwert eingestellten Wert betrie-

Parameter:	Erregerstrom-Rückmeldung

Dieser Parameter definiert das Vorhandensein einer Rückführung des Erregerstromes (Ist-Erregerstrom).

Nein

Ja

Es ist *keine* Rückführung des Erregerstromes vorhanden. Eine Erregerstrom-Regelung mit *geschlossenem* Regelkreis ist *nicht* möglich.

Der Ist-Erregerstrom wird über den *Analogeingang AI3* zurückgeführt. Eine Erregerstrom-Regelung mit *geschlossenem* Regelkreis ist möglich.

PARAMETEREINSTELLUNGEN -ERREGERSYSTEM

Einstellungen für Basis- und Regelungsparameter

Parametername	Einstellwert (Voreinstellung)	Einhe it	Einstellbereich					
Sollwertvo	Sollwertvorgabe: Erregerstrom							
AO 1(2) (Soll-Erregerstrom): MessberEnde	0,00	mA	10,00 25,00 mA					
AO 1(2) (Soll-Erregerstrom): MessberAnf.	0,00	mA	0,00 8,00 mA					
Rückfüh	rung: Erregerstrom							
AI 3 (Ist-Erregerstrom): MessberEnde	0,00	mA	0,00 25,00 mA					
AI 3 (Ist-Erregerstrom): MessberAnf.	0,00	mA	0,00 8,00 mA					
PID-Regler: I	Erregerstrom-Rege	lung						
PID-Regler (Erregerstrom): P-Verstärkung	0,00	-	0,00 20,00					
PID-Regler (Erregerstrom): I-Zeit	0,10	min	0 ,1 0 20,00 min					
PID-Regler (Erregerstrom): D-Zeit	0,10	min	0,00 30,00 min					
Erreger	system: Nenndaten							
Motor: Erregernennstrom	0,0	А	0,1 1600,0 A					
Erregersystemnennstrom	0,0	А	0,0 1600,0 A					
ASYNC Start: Erregerfrequenz	0,00	Hz	0,00 80,00 Hz					
Sollwert-Aktualisierungsrate	0,00	Hz	0,00 80,00 Hz					
Arbeitsmodus: Konstanter Leistungsfaktor								
Leistungsfaktor-Sollwert	0,00	-	0,00 1,00					
Arbeitsmod	us: Manuelle Erregu	ung						
Erregerstrom-Sollwert	0,0	А	0,0 1600,0 A					

Tab. 4-28 Erregersystem - Basis- und Regelungsparameter

Parameterbeschreibung

Sollwertvorgabe: Erregerstrom Die Vorgabe des Sollwertes für den Erregerstrom kann wahlweise über den An*alogausgang AO1* oder *Analogausgang AO2* ausgeführt werden.

HINWEIS

Zur Konfiguration des *Analogausgangs AO1* oder *AO2* ist jeweils die folgende Parametereinstellung zu wählen:

- > Analogausgang AO1 = Erregerstrom oder
- > Analogausgang AO2 = Erregerstrom

Die folgenden zwei Parameter definieren jeweils den *Messbereichs-Anfang* und das *Messbereichs-Ende* der Übertragungskennlinien für den *Analogausgang AO1* bzw. *AO2*. Der Anfangspunkt sowie der Endpunkt der Übertragungskennlinie werden jeweils durch ein Wertepaar definiert:

	AO-Messbereich	Messwertskala
Wertepaar Anfangspunkt:	Parameter	Definierter Skalenanfang
Wertepaar Endpunkt:	Parameter	Definiertes Skalenende

Tab. 4-29 AO-Übertragungskennlinie: Soll-Erregerstrom – Anfangs- und Endpunkte

Abb. 4-96 Analogausgang AO 1 bzw. AO 2 – Übertragungskennlinie: Soll-Erregerstrom

Parameter: AO 1(2) (Soll-Erregerstrom): Messber.-Ende

Dieser Parameter definiert den *maximalen Ausgangssignalstrom* als Messbereich-Ende des *Analogausgangs AO1* bzw. *AO2*, der mit Parameter *Motor-Erregernennstrom* eingestellte Wert für die Übertragung des *maximalen* Soll-Erregerstroms (Messwertskala-Ende) fließen soll.

	Parameter:	AO 1(2) (Soll-Erregerstrom): MessberAnf.
Einstellbereich: 0,00 8,00 mA	Dieser Parameter definiert den <i>mini</i> Anfang des <i>Analogausgangs AO1</i> bzw. A Erregerstroms (Messwertskala-Anfang)	<i>imalen Ausgangssignalstrom</i> als Messbereich- 402, der für die Übertragung des <i>minimalen</i> Soll- fließen soll ⇒ 0 A.

RÜCKFÜHRUNG: Erregerstrom

Einstellbereich:

0,00 ... 25,00 mA

Die Rückführung des Erregerstroms erfolgt über den Analogeingang Al 3.

Die folgenden zwei Parameter definieren jeweils den Messbereichs-Anfang und das Messbereichs-Ende der Übertragungskennlinien für den *Analogeingang Al.3.* Der Anfangspunkt sowie der Endpunkt der Übertragungskennlinie werden jeweils durch ein Wertepaar definiert:

	AI-Messbereich	Messwertskala
Wertepaar Anfangspunkt:	Parameter	Definierter Skalenanfang
Wertepaar Endpunkt:	Parameter	Definiertes Skalenende

Tab. 4-30 AI 3-Übertragungskennlinie: Ist-Erregerstrom – Anfangs- und Endpunkte

Abb. 4-97 Analogeingang Al 3 – Übertragungskennlinie: Ist-Erregerstrom

Parameter: AI 3 (Ist-Erregerstrom): Messber.-Ende

Einstellbereich: 0,00 ... 25,00 mA Dieser Parameter definiert den maximalen Eingangssignalstrom als Messbereich-Ende des Analogeingangs AI3, der mit Parameter Motor-Erregernennstrom eingestellte Wert für die Übertragung des maximalen Ist-Erregerstroms (Messwertskala-Ende) fließen soll.

Parameter:	AI 3 (Ist-Erregerstrom): MessberAnf.
------------	--------------------------------------

Dieser Parameter definiert den minimalen Eingangssignalstrom als Messbereich-Anfang des Analogeingangs AI3, der für die Übertragung des minimalen Ist-Erregerstroms (Messwertskala-Anfang) fließen soll \Rightarrow 0 A.

PID-REGLER: ERREGERSTROM-REGELUNG

Einstellbereich:

0,00 ... 8,00 mA

Für die Parametereinstellungen Erregungsregelung = Aktiviert und Rückmeldung Erregung verfügbar =Ja, wird der Soll-Erregerstrom durch den internen PID-Regler geregelt.

	Parameter:	PID-Regler (Erregerstrom): P-Verstärkung
Einstellbereich: 0,00 20,00	Dieser Parameter definiert den P Erregerstrom.	<i>proportionalitätskoeffizient</i> der Regelung für den
	Parameter:	PID-Regler (Erregerstrom): I-Zeit
Einstellbereich:),00 20,00 min.	Dieser Parameter definiert die Integr	<i>alzeit</i> der Regelung für den Erregerstrom.
	Parameter:	PID-Regler (Erregerstrom): D-Zeit

Dieser Parameter definiert die Differenzzeit der Regelung für den Erregerstrom.

Einstellbereich: 0,00 ... 30,00 min.

0,00 ... 20,

Erregersystem Nenndaten		
	Parameter:	Motor: Erregernennstrom
Einstellbereich: 0,1 1600,0 A	Dieser Parameter definiert den Erre	egernennstrom des anzutreibenden Synchronmotors.
	Parameter:	Erregersystemnennstrom
Einstellbereich: 0,0 1600,0 A	Dieser Parameter definiert den Ner	nnstrom des Erregersystems.
	Parameter:	ASYNC Start: Erregerfrequenz
Einstellbereich: 0,00 80,00 Hz	Dieser Parameter definiert die Freq	<i>guenz, bei der die Erregung zugeschaltet</i> wird.
	Parameter:	Sollwert-Aktualisierungsrate
Einstellbereich: 0,00 80,00 Hz	Beschreibung folgt!	
Arbeitsmodus: Konstanter Leistungsfaktor		
	Parameter:	Leistungsfaktor-Sollwert
Einstellbereich: 0,00 1,00	Dieser Parameter definiert den <i>Le</i> Arbeitsmodus = Konstanter Leistun	<i>istungsfaktor-Sollwert</i> für die Parametereinstellung <i>gsfaktor</i> .
Arbeitsmodus: Manuelle Erregung		
	Parameter:	Erregerstrom-Sollwert
Einstellbereich: 0,1 1600,0 A	Dieser Parameter definiert den <i>E</i> Arbeitsmodus = Manuell.	rregerstrom-Sollwert für die Parametereinstellung

MENÜ: BETRIEBSSTUNDEN

Das Menü *Betriebsstunden* gibt Aufschluss über die Dauer der Motorlaufzeiten, wenn der Motor über den FU betrieben wird.

HINWEIS				
Bei Verwendung der synchronen Umschaltung FU <-> Netz:				
 └ > Vom FU zum Netz.				
Die Zähler für die Motorlaufzeiten werden <i>gestoppt</i> , sobald die Synchronisierung des FU auf das Netz erfolgreich beendet ist.				
 Vom Netz zum FU: Die Z\u00e4hler f\u00fcr die Motorlaufzeiten werden gestartet, sobald die Synchronisierung des FU auf das Netz erfolgreich beendet ist. 				

Zur Überwachung der Motorlaufzeiten stehen zwei verschiedene Zähler zur Verfügung:

	0 (2			
AuCom	MS Bereit	FU Bereit	FU Betrieb	Störung	20:05:51 09 / 03 / 2023
Weitere Systeme	\orladesystem	Erregersystem	Betriebsstunden Versi inform	ions Benutzer- nation umgebung	FU-Monitor
	Betriebsstunden		_		Trend- rekorder
		Tag	Stunde Minute		Parameter
	□ Aktuelle FU-Motorlaufzeit Gesamte				Ereignis- rekorder
	FU-Motorlaufzeiter				Leistungs- zellen:Status
					Weitere Einstellungen

Abb. 4-98 Menü: Betriebsstunden

Aktuelle FU-Motorlaufzeit Gesamte FU-Motorlaufzeiten

AKTUELLE FU-MOTORLAUFZEIT Der Zähler *Aktuelle FU-Motorlaufzeit* zählt die aktuelle Motorlaufzeit. Der Zähler startet, sobald für den Motor das Startsignal abgesetzt wird. Sobald das Stoppsignal aktiviert ist, stoppt der Zähler und wird automatisch auf 0 zurückgesetzt.

Gesamte FU-Motorlaufzeiten Der Zähler *Gesamte FU-Motorlaufzeiten* addiert die einzelnen Motorlaufzeiten (s. Zähler Systemlaufzeit) und speichert diese Zeiten zu einer Gesamt-Motorlaufzeit. Der Zähler startet, sobald für den Motor das Startsignal abgesetzt wird. Sobald das Stoppsignal aktiviert ist, stoppt der Zähler und speichert die aktuelle Gesamt-Motorlaufzeit.

ŀ
[
ç

HINWEIS

Die Gesamte Systemlaufzeit wird in der Steuereinheit nichtflüchtig gespeichert.

MENÜ: VERSIONSINFORMATION

Sobald die Parameter hochgeladen sind, zeigt diese Menüseite die Softwareversionen des FU-Steuersystems an.

Abb. 4-99 Menü: Versionsinformation

Steuereinheit – Version I/O-Schnittstelleneinheit - Version Bedieneinheit (HMI) - Version

Die angezeigten Softwareversionen geben Aufschluss über die Kompatibilität der drei Einheiten des Steuersystems untereinander.

STEUEREINHEIT - VERSION Softwareversion der Hauptprozessor-Baugruppe der Steuereinheit

I/O-SCHNITTSTELLENEINHEIT - Version Softwareversion der I/O-Schnittstelleneinheit (SPS)

BEDIENEINHEIT (HMI) - VERSION Softwareversion des Touchscreens

HINWEIS

Bei Software-Updates ist auf die Kompatibilität der SW-Versionen zu achten. Für Rückfragen wenden Sie sich bitte an AuCom.

MENÜ: BENUTZERUMGEBUNG

Das Menü Benutzerumgebung ist in die zwei Bereiche:

- Konfigurationsbereich: Einstellungen von Systemfunktionen und ٠
- Login-Bereich: Einstellungen für Passwörter und Benutzerebenen •

unterteilt, die jeweils weitere Menüs enthalten.

Abb. 4-100 Menü: Weitere Einstellungen

- 1 Menü: Systemeinstellungen 2
 - (Menü: Geräteeinstellungen; nur für Hersteller!)
- **3 4** Menü: Passwort setzen
 - Anzeige: Status Benutzerebene
 - Menü: Benutzer Login

Ğ

6

Ausführungsschaltfläche: Ausloggen

Konfigurationsbereich: Systemeinstellungen

		3 (3				
AuCom	MS Bereit	0	FU Bereit	FU Betrieb	Stör	ung	20:05:51 09 / 03 / 2023
Weitere Systeme	Vorladesy s	tem	Erregersystem Be	triebsstunden	Versions information	Benutzer- umgebung	FU-Monitor
Systemeins Einstellungen	ellungen	Manad		Minute Colum		×	Trend- rekorder
Systemze	ait 0				OK		Parameter
Standby-Sei Einstellunger	te 1:		Auswahl Menüsprache Deut	sch 🗡			Ereignis- rekorder
Verzöge-	aktivieren	s			FU-Monitor: Messgrößenausv	vahl	Leistungs- zellen:Status
							Weitere Einstellungen

Abb. 4-101 Menü: Systemeinstellungen

4

Einstellungen: Systemzeit (Datum und Uhrzeit)

Einstellungen: Standby-Seite (Aktivierung und Zeitverzögerung)

Einstellung: Auswahl Sprache (Menüsprache im Display des HMI)

Einstellungen: FU-Monitor: Messwertauswahl (Auswahl der Messgrößen für die Messwertanzeigen im *FU-Monitor*)

Systemzeit Die *Systemzeit* beinhaltet Informationen zum Datum [TT/MM/JJJJ] und zur Uhrzeit [hh:mm:ss] des Steuersystems und wird im Display rechts oben auf den Menüseiten angezeigt.

Abb. 4-102 Systemzeit – Datum und Uhrzeit

KAPITELVERWEIS

Die Parametrierung der Systemzeit erfolgt als exemplarische Anleitung im Kapitel "4.5.6 Änderungen von Parametereinstellungen (allgemein)"

STANDBY-SEITE – EINSTELLUNGEN Diese Parametergruppe legt fest, *ob* die *Standby-Seite* (Bereitschaftsanzeige) verwendet werden soll und mit welcher *Zeitverzögerung* nach der letzten Berührung des Touchscreen die *Standby-Seite* angezeigt wird.

KAPITELVERWEIS

- Die Parametrierung der *Standby-Seite* (Bereitschaftsanzeige) erfolgt als exemplarische Anleitung in Kapitel "4.5.6 Änderungen
- von Parametereinstellungen (allgemein)".

AUSWAHL MENÜSPRACHE

Die Menüsprache im Display des Touchscreen (HMI) kann für die folgenden Landessprachen eingestellt werden:

- Deutsch
- Englisch
- Russisch
- Französisch
- Spanisch
- Chinesisch

KAPITELVERWEIS

Die Auswahl der Menüsprache erfolgt als exemplarische Anleitung in Kapitel "4.5.7 Auswahl der Menüsprache".

FU-MONITOR: MESSGRÖBENAUSWAHL Diese Parametriermaske dient zur einzelnen Auswahl der folgenden vier Messgrößen, dessen Messwerte im Menü *FU-Monitor* angezeigt werden können:

FU-Monitor: Messgrößenausw ahl		\times
Eingangs- leistungsfaktor Eingangs- leistung	Ausgangs- leistungsfaktor Ausgangs- leistung	

Abb. 4-103 Messgrößenauswahl zur Messwertanzeige im FU-Monitor

Einstelloptionen:

Der Messwert wird nicht angezeigt. I/II JUIIWEIL I/II ISLWEIL 0,0 70 (Al 1) (AI 2) Eingangs-Ausgangsleistung leistung Eingangs-Ausgangsleistungsfaktor leistungsfaktor System-Synchroni-0,00 0,0 sierung: $\Delta \phi$ spannung

Abb. 4-104 FU-Monitor – Beispiel: keine Anzeige der vier optionalen Messwerte

Der Messwert wird angezeigt.

 \checkmark

	(AI 1)	0,0	%	(AI 2)	0,0	%	
	Eingangs- leistung	0	kW	Ausgangs- leistung	0	kW	F
le	Eingangs- istungsfaktor	0,00		Ausgangs- leistungsfaktor	0,00		
	System- spannung	0,00		Synchroni- sierung: Δφ	0,0	٥	Ş

Abb. 4-105 FU-Monitor – Beispiel: Anzeige aller vier optionalen Messwerte

Login-Bereich

PASSWORT ÄNDERN Diese Parametriermaske dient zur *Festlegung von neuen Passwörtern* für die Benutzerebenen *Bediener* und *Ingenieur*. Um für eine bestimmte Benutzerebene das Passwort ändern zu können, muss diese Benutzerebene zunächst aktiviert werden.

ANLEITUNG - Neues Passwort für Benutzerebene Bediener festlegen

Start	Benutzerebene: Bediener

Parametriermaske "Passwort ändern" aufrufen

Passort andem Keiles Passwort eingeben Aktuelles Passwort eingeben 1 2 3 4 5 6 7 8 9 Löschen 0 OK

Abb. 4-106 Aufforderung "Aktuelles Passwort eingeben"

FREIGABEPASSWORT EINGEBEN

Abb. 4-107 Eingegebene Passwortziffern

- Schritt 1: Im Menü Systemeinstellungen die Schaltfläche Passwort ändern anklicken
- Die Parametriermaske Passwort ändern mit der Aufforderung zur Eingabe des aktuell gültigen Passwortes wird angezeigt.

- Schritt 2: Aktuell gültiges Passwort für die Benutzerebene *Bediener* über den angezeigten Ziffernblock eingeben.
- Die Eingabe der einzelnen Ziffern des aktuellen Passwortes wird jeweils durch die farbig ausgefüllten Kreisanzeigen über dem Ziffernblock angezeigt.

Abb. 4-108 Aufforderung "Neues Passwort eingeben"

Neues Passwort eingeben

Passwort ändern			×
Benutzername Bediener 🗸			
Neue	s Passwort eir	ngeben	
• •	•••	•	
1	2	3	
4	5	6	
7	8	9	
Löschen	0	ОК	

Abb. 4-109 Eingegebene Passwortziffern

Nach Eingabe der letzten Passwortziffer wird die Parametriermaske zur mit der ≻ Aufforderung zur Eingabe des neuen Passwortes angezeigt.

- Schritt 3: Neues Passwort für die Benutzerebene Bediener über den angezeigten Ziffernblock eingeben.
- Die Eingabe der einzelnen Ziffern des neuen Passwortes wird jeweils durch die \geq farbig ausgefüllten Kreisanzeigen über dem Ziffernblock angezeigt.
- > Nach Eingabe der letzten Passwortziffer wird die Parametriermaske geschlossen.
- > Das neue Passwort für die Benutzerebene Bediener ist jetzt gespeichert.
- > Die Benutzerebene Bediener wird automatisch verlassen; die Benutzerebene Standard ist wieder aktiviert.
- > Der Status der aktuellen Benutzerebene wird im Menü Benutzerumgebung angezeigt:

Abb. 4-110 Status Benutzerebene: Standard

Ende

BENUTZER-LOGIN

Über das Benutzer-Login kann eine passwortgeschützte Benutzerebene aktiviert werden. Zur Auswahl stehen die Benutzerebenen Bediener und Ingenieur.

\equiv	

KAPITELVERWEIS

- \triangleright Die Aktivierung einer passwortgeschützten Benutzerebene erfolgt gemäß der in Kapitel "4.5.5 Benutzerebenen" beschriebenen Anleitung.
- Durch das Betätigen der Schaltfläche Ausloggen wird eine aktive, passwortgeschützte AUSI OGGEN Benutzerebene verlassen und die Benutzerebene *Standard* aktiviert.

5 FU-Betrieb

5.1 BETRIEBSFUNKTIONEN

Der FU verfügt über eine umfassende Anzahl von *Betriebsfunktionen*, die den Anforderungen vieler verschiedener Anwendungen gerecht werden.

5.1.1 ERWEITERTE U/f-STEUERUNG

Abb. 5-1 Blockschalt der erweiterten U/f-Steuerung – FU-Typ = ASYNC Motor U/f

5.1.2 ASYNCHRONMOTOR - VEKTORREGELUNG MIT OFFENEM REGELKREIS

Der Mittelspannungs-FU verfügt über eine hochwertige und zuverlässige *Vektorregelung* (engl.: vector control, VC) mit *offenem* Regelkreis für die meisten Einzelanwendungen von Asynchronmotoren die eine höhere Regeldynamik erfordern.

Abb. 5-2 Blockdiagramm einer offenen Vektorregelung – FU-Typ = ASYNC VC ohne Sensor

1 Park-Transformation (dq-Transformation) der Messwerte in Vektorgrößen zur Abbildung des Motormodells

- 2 PI-Regler für den magnetischen Fluss
 - PI-Regler für Magnetisierungsstrom
 - PI-Regler für die Drehzahl
- **345** PI-Regler für Wirkstrom (Drehmoment)
 - Park-Rücktransformation (dq-Rücktransformation)
 - Totzeitkompensation und PWM-Modulation
- 8 IGBT-Zündimpulse

Der FU verwendet:

- das Motormodell,
- die gemessenen Ständerspannungen Ua, Ub, Uc und
- die gemessenen Ständerströme ia, ib, ic,

um

- den magnetischen Fluss arPsi٠
- die Synchrondrehzahl ω_{s_i}
- den synchronen elektrischen Winkel θ_s und
- den Schlupf wschlupf

zu berechnen.

Gemäß dem synchronen elektrischen Winkel θ_s ergibt die Transformation der Statorströme in das dq-Koordinatensystem:

- den Magnetisierungsstrom ids und
- den Wirkstrom igs.

PI-REGLER: Der PI-Regler für den magnetischen Fluss führt eine Proportional- und Integralregelung MAGNETISCHEN FLUSS in Abhängigkeit der Differenz zwischen dem Sollwert Ψ^* und dem berechneten Ist-Wert Ψ des magn. Flusses durch und erzeugt auf diese Weise einen Magnetisierungsstrom-Sollwert i ds .

PI-REGLER: Der PI-Regler für die Drehzahl führt eine Proportional- und Integralregelung in Abhängigkeit der Differenz zwischen der Drehzahl-Sollwert ω^* und der Drehzahl-Istwert ω_r Drehzahl durch, und erzeugt auf diese Weise einen Wirkstrom-Sollwert i as.

PI-REGLER: Der PI-Regler für den Magnetisierungsstrom führt eine Proportional- und Integralrege-MAGNETISIERUNGSSTROM lung in Abhängigkeit der Differenz zwischen dem *Magnetisierungsstrom-Sollwert* i_{ds}^{*} , dem Magnetisierungsstrom-Istwert ids (berechnet) und eines ermittelten Korrekturfaktors (Fluss FF) und erzeugt auf diese Weise den *Spannungssollwert* U $_{ds}^{*}$ für die <u>d-Achse</u>. Dieser Spannungssollwert bestimmt den benötigten Magnetisierungsstrom des Motors.

> PI-REGLER: Der PI-Regler für den Wirkstrom (Drehmoment) führt eine Proportional- und Integralre-WIRKSTROM gelung in Abhängigkeit der Differenz zwischen dem Wirkstrom-Sollwert i as und dem Wirkstrom-Istwert iqs (berechnet) durch, und erzeugt auf diese Weise einen Spannungssollwert U * für die q-Achse. Dieser Spannungssollwert bestimmt den benötigten Wirkstrom des Motors.

> > Die Spannungsausgänge U_{ds}^{*} und U_{qs}^{*} der <u>dq-Achsen</u> werden einer Rücktransformation der dg-Koordinaten in Abhängigkeit vom Synchronwinkel Øs unterzogen und einer Totzeitkompensationsmodulation, um die IGBT-Zündimpulse für alle drei Phasen zu erzeugen.

Abb. 5-3 Blockdiagramm einer offenen Vektorregelung – FU-Typ = SYNC VC ohne Sensor

5.1.4 SYNCHRONE UMSCHALTUNG

Die *Synchrone Umschaltung* ermöglicht es dem FU, *mehrere* Motoren nacheinander sanft zu starten und zu steuern. Der *synchrone Transfer* unterscheidet dabei zwei Vorgänge:

1. TRANSFER: Der FU startet den Motor und überträgt ihn dann auf das speisende MS-Netz. *vom FU zum Netz:*

2. TRANSFER: Der FU synchronisiert sich auf den Motor und überträgt ihn dann vom MS-Netz auf den *vom Netz zum FU:* FU-Ausgang.

TRANSFER VOM FU ZUM NETZ

Der FU startet den Motor, synchronisiert die Frequenz und den Phasenwinkel und die Höhe der FU-Ausgangsspannung zum MS-Netz, schaltet anschließend den Motor auf die einspeisende Leitung um und schaltet den FU ab.

ANPASSEN VON FREQUENZ UNDNach Erhalt des Befehls für die synchrone Umschaltung (DI: Start Synchrone Umschal-
tung) startet der FU zunächst den Synchronisierungsvorgang. Dabei misst der FU die
Frequenz, die Phasenlage und die Amplitude der MS-Netzspannung. Diese Messwerte
dienen als Referenzwerte, um den FU-Ausgang mit dem MS-Netz zu synchronisieren.

Wenn die Höhe der Ausgangsfrequenz mit der Höhe der Eingangsfrequenz übereinstimmt, synchronisiert der FU die *Phasenlage* seiner Ausgangsspannung auf die *Phasenlage* der Netzspannung.

Wenn die Phasenlagen übereinstimmen, synchronisiert der FU die *Amplitude* seiner Ausgangsspannung mit der *Amplitude* der Netzspannung.

Wenn die Frequenz, Amplitude und Phasenlage des FU-Ausgangs mit dem MS-Netz übereinstimmen, wird der digitale Ausgang *Synchronisierung erfolgreich* aktiviert. Dieses Signal kann für die synchrone Umschaltung verwendet werden. Der *Systemstatus* zeigt die Meldung *Synchronisierung erfolgreich*.

Sobald die *Synchrone Umschaltung* erfolgreich war, wird der FU-Betrieb gestoppt und das FU-Ausgangsschütz geöffnet.

TRANSFER VOM NETZ ZUM FU

Der FU synchronisiert sich auf einen Motor, der bereits (am MS-Netz) läuft, und schaltet dann den Motor von der netzseitigen Einspeiseleitung auf die FU-Steuerung um.

Der FU läuft zunächst im Leerlauf bis die Frequenz, Phasenlage und Amplitude der FU-Ausgangsspannung mit der MS-Netzspannung synchronisiert ist.

Wenn die *Frequenz, Amplitude* und *Phasenlage* der FU-Ausgangspannung mit denen der MS-Netzspannung übereinstimmen, wird der digitale Ausgang *Synchronisierung erfolgreich* aktiviert. Dieses Signal kann für die synchrone Umschaltung verwendet werden. Der Systemstatus zeigt die Meldung *Synchronisierung erfolgreich*.

HINWEIS

- > Die maximal zulässige Phasenwinkeldifferenz kann mit dem Parameter *Synchronisierung: Max. zul.* $\Delta \varphi$ eingestellt werden.
- Die Synchronisierrichtung hängt von der Einstellung des Parameters Umschaltfreigabe: FU<->Netz ab.
- Die Systemparameter müssen korrekt konfiguriert sein, bevor die synchrone Umschaltung eingeleitet werden kann. Die Einstellungen der Parameter Maximale Frequenz sowie Modus für Sollwertvorgabe können die Ausgangsfrequenz des FU während der synchronen Umschaltung beeinflussen, so dass der Transfer des Motors fehlschlagen kann.
- Für die Synchrone Umschaltung sind zusätzliche Komponenten wie z. B. ein Synchronschaltschrank, eine FU-Ausgangsdrossel und erforderlich.

5.1.5 MASTER/SLAVE STEUERUNGS- UND REGELUNGSFUNKTIONEN

ANWENDUNGEN MIT MEHRFACHANTRIEBEN

Der FU kann in Master/Slave-Anwendungen (Multi-Frequenzumrichterbetrieb) eingesetzt werden, bei denen sich zwei oder mehr FUs die Steuerung des System für mehrere Motoren teilen. Die Motorwellen sind über Kupplungen, Ketten, Zahnräder oder Förderbänder miteinander verbunden. Die Master/Slave-Steuerung gewährleistet den Lastausgleich zwischen den FUs.

Master-SLave-Topologie Ein FU wird zum Master des Systems ernannt; alle anderen sind Slaves. Der Master kommuniziert mit den Slaves über Lichtwellenleiter der Hauptprozessor-Baugruppen AP4. Der Master überträgt Informationen für Betrieb, Drehzahl, Drehmoment usw. an den Slave in Echtzeit, und der Slave reagiert auf die Datenbefehle des Masters entsprechend seiner eigenen Messdaten.

ERFORDERLICHEUm die Master/Slave-Anwendung zu ermöglichen, muss für alle beteiligten FUs die Para-
metereinstellung Master/Slave-Betrieb = Gültig gewählt werden. Jeder FU muss dabei
jeweils mit dem Parameter Master/Slave-Modus in Bezug auf seine Funktion als Master
oder Slave eingestellt werden.

Abb. 5-4 FU-Typ = ASYNC Motor U/f: Stromausgleichsregelung im Slave

Prozessleitsystem (PLS)

- Im Motorstrom-Sollwert (Master)
- fm Motorfrequenz
- fs Slave-Sollfrequenz
- ls Slave-Motorstrom
- PI Strom-Ausgleichsregler

Abb. 5-5 FU-Typ = ASYNC VC ohne Sensor: Wirkstromregelung

- Prozessleitsystem (PLS)
- ITm Motorstrom-Sollwert (Master)
- f*m Motor-Sollfrequenz
- fm Motor-Istfrequenz

5.1.6 SCHNELLSTART / FU-START BEI LAUFENDEM MOTOR

Der FU kann die Steuerung für einen Motor übernehmen, der sich bereits bzw. noch dreht.

Für die Parametereinstellung *START-Modus* = *Schnellstart* ermittelt der FU die Drehzahl des sich noch drehenden Motors bevor der FU-Ausgang auf den Motor geschaltet wird. Der FU gibt dann eine Spannung mit der gleichen *Amplitude, Frequenz* und *Phasenlage* wie die des drehenden Motors aus und beschleunigt den Motor dann auf den Prozess-Sollwert.

5.1.7 MOTOR-RÜCKWÄRTSLAUF

Der FU kann einen Motor in *umgekehrter Drehrichtung* (Rückwärtslauf) betreiben. Der Rückwärtslauf ist für die Parametereinstellung *Freigabe Rückwärtslauf* = *Aktiviert* verfügbar. Der FU-Betrieb im Rückwärtslauf hängt von den Einstellungen der Parameter:

- Betriebsart (für die START/STOP-Steuerung des Motors),
- *Fern-START/STOP: DI-Modus* (für Pegel- oder Impulssignale in der *Betriebsart = Fernsteuerung (DI)*) und
- Modus f
 ür Sollwertvorgabe (der Sollfrequenz/Solldrehzahl)

ab.

=
=

HINWEIS

- Für den Motor-Rückwärtslauf über den FU ist grundsätzlich eine negative Sollfrequenz/Solldrehzahl vorzugeben.
- Der FU steuert den Motor im Rückwärtslauf sowie im Vorwärtslauf gemäß den Einstellungen für die Parameter START-Modus und STOP-Modus.

Die folgende Tabelle gibt Aufschluss über die verschiedenen Varianten 1 bis 9, den Motor im Rückwärtslauf über den FU zu steuern:

		1	2	3	4	6	6	7	8	9
				STAR	T/STO	P-Steu	Jerung	über:		
	Parametereinstellungen	нмі	нмі	PLS	PLS	DI	DI	DI	DI	DI
Freigabe	Freigabe Rückwärtslauf = Aktiviert	1	1	1	1	1	1	1	1	1
	Betriebsart = Lokale Bedienung (HMI)	1	1	0	0	0	0	0	0	0
Betriebsart	Betriebsart = Fernbedienung (PLS)	0	0	1	1	0	0	0	0	0
	Betriebsart = Fernbedienung (DI)	0	0	0	0	1	1	1	1	1
DI-Signaltyp für	Fern-START/STOP: DI-Modus = Pegelsignal	0	0	0	0	1	1	0	0	0
Fernbedienung (DI)	Fern-START/STOP: DI-Modus = Impulssignal	0	0	0	0	0	0	1	1	1
	Modus für Sollwertvorgabe = Sollwertvorgabe über HMI	1	0	0	1	0	0	0	0	1
Sollwertvorgabe	Modus für Sollwertvorgabe = Sollwertvorgabe über PLS	0	1	1	0	0	0	0	1	0
	Modus für Sollwertvorgabe = Sollwertvorgabe über Dl	0	0	0	0	1	0	1	0	0
	Modus für Sollwertvorgabe = Sollwertvorgabe über Al	0	0	0	0	0	1	0	0	0
	Motor-Rückwärtslauf starten	HMI	HMI	PLS	PLS	DI	DI	DI	DI	DI
	Sollwertvorgabe: negativer Wert	1	1	1	1	1	1	1	1	1
	HMI: Schaltfläche START	1	1	0	0	0	0	0	0	0
START- Bedingungen	PLS-Startbefehl	0	0	1	1	0	0	0	0	0
Doanigangon	DI (-XS1: 1,10) Fern-Start/Stopsignal	0	0	0	0	1	1	1	1	1
	DI (-XS1: 1,9) Fern-Start/Stopsignal	0	0	0	0	1	1	0	0	0
\Rightarrow	Motor startet Rückwärtslauf	1	1	1	1	1	1	1	1	1
	Motor-Rückwärtslauf stoppen	HMI	HMI	PLS	PLS	DI	DI	DI	DI	DI
	HMI: Schaltfläche <i>STOP</i>	1	1	0	0	0	0	0	0	0
STOP-	PLS-Stopbefehl	0	0	1	1	0	0	0	0	0
Bedingungen	DI (-XS1: 1,10) Fern-Start/Stopsignal	0	0	0	0	х	х	х	х	х
	DI (-XS1: 1,9) Fern-Start/Stopsignal	0	0	0	0	0	0	1	1	1
\Rightarrow	Motor stoppt Rückwärtslauf	1	1	1	1	1	1	1	1	1

1: entspricht der Parametereinstellung bzw. aktiviert

0: entspricht <u>nicht</u> der *Parametereinstellung* bzw. *deaktiviert* x: entspricht *aktiviert* oder *deaktiviert*

Tab. 5-1 Rückwärtslauf - Steuerungsvarianten

- 2 START/STOP-Steuerung über Touchscreen (HMI) und Sollwertvorgabe über PLS
- 3 START/STOP-Steuerung und Sollwertvorgabe über PLS
- 4 START/STOP-Steuerung über PLS und Sollwertvorgabe über Touchscreen (HMI)
- 5 START/STOP-Steuerung und Sollwertvorgabe über digitale Eingänge (DI: Pegelsignal)
- 6 START/STOP-Steuerung über digitale Eingänge (DI: Pegelsignal) und Sollwertvorgabe über Analogeingang (AI)
- **7** START/STOP-Steuerung und Sollwertvorgabe über digitale Eingänge (DI: Impulssignal)
- 8 START/STOP-Steuerung über digitale Eingänge (DI: Impulssignal) und Sollwertvorgabe über PLS
- 9 START/STOP-Steuerung über digitale Eingänge (DI: Impulssignal) und Sollwertvorgabe über Touchscreen (HMI)

START/STOP-STEUERUNG UND SOLLWERTVORGABE ÜBER TOUCHSCREEN (HMI) Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Lokale Bedienung (HMI)
- Modus für Sollwertvorgabe = Sollwertvorgabe über HMI

Sollwertvorgabe: Beispiel

- Vorwärtslauf: *Frequenz eingeben* (HMI) = 20 Hz
- Rückwärtslauf: *Frequenz eingeben* (HMI) = 20 Hz

2 START/STOP-Steuerung über Touchscreen (HMI) und Sollwertvorgabe über PLS Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Lokale Bedienung (HMI)
- Modus für Sollwertvorgabe = Sollwertvorgabe über PLS

Sollwertvorgabe: Beispiel

- Vorwärtslauf: *Kommunikationsprotokoll* (PLS) = 20 Hz
- Rückwärtslauf: Kommunikationsprotokoll (PLS) = -20 Hz

Die folgende Abbildung zeigt das Funktions-/Zeit-Diagramm für die Varianten 1 und 2 eines Motor-Rückwärtslaufs:

Abb. 5-6 Motor-Rückwärtslauf: Varianten 1 bzw. 2

AUCOM MOTOR CONTROL SPECIALISTS

3 START/STOP-Steuerung und Sollwertvorgabe über PLS Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (PLS)
- Modus für Sollwertvorgabe = Sollwertvorgabe über PLS

Sollwertvorgabe: Beispiel

- Vorwärtslauf: Kommunikationsprotokoll (PLS) = 20 Hz
- Rückwärtslauf: Kommunikationsprotokoll (PLS) = -20 Hz

START/STOPSTEUERUNG ÜBER PLS UND
SOLLWERTVORGABE ÜBER
TOUCHSCREEN (HMI)

Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (PLS)
- Modus für Sollwertvorgabe = Sollwertvorgabe über HMI

Sollwertvorgabe: Beispiel

- Vorwärtslauf: *Frequenz eingeben* (HMI) = *20 Hz*
- Rückwärtslauf: *Frequenz eingeben* (HMI) = *20 Hz*

Die folgende Abbildung zeigt das Funktions-/Zeit-Diagramm für die Varianten 3 und 4 eines Motor-Rückwärtslaufs:

5 *START/STOP-STEUERUNG UND SOLLWERTVORGABE ÜBER DIGITALE EINGÄNGE (DI: PEGELSIGNAL)* Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (DI)
- Fern-START/STOP: DI-Modus = Pegelsignal
- Modus für Sollwertvorgabe = Sollwertvorgabe über DI

Sollwertvorgabe: Beispiel

- Vorwärtslauf: Drehzahlsektion 3 oder Drehzahlsektion 7 (DI) = 20 Hz
- Rückwärtslauf: *Drehzahlsektion 3* oder *Drehzahlsektion 7* (DI) = -20 Hz

Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (DI)
- Fern-START/STOP: DI-Modus = Pegelsignal
- Modus für Sollwertvorgabe = Sollwertvorgabe über Al

Sollwertvorgabe: Beispiel

- Vorwärtslauf: AI 1: f/n Sollwertvorgabe (AI) = 20 Hz
- Rückwärtslauf: *Al 1: f/n Sollwertvorgabe* (Al) = -20 Hz

Die folgende Abbildung zeigt das Funktions-/Zeit-Diagramm für die Varianten **5** und **6** eines Motor-Rückwärtslaufs:

Abb. 5-8 Motor-Rückwärtslauf: Varianten 5 bzw. 6

6 START/STOP-STEUERUNG ÜBER DIGITALE EINGÄNGE (DI: PEGELSIGNAL) UND SOLLWERTVORGABE ÜBER ANALOGEINGANG (AI) Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (DI)
- Fern-START/STOP: DI-Modus = Impulssignal
- Modus für Sollwertvorgabe = Sollwertvorgabe über DI

Sollwertvorgabe: Beispiel

- Vorwärtslauf: Drehzahlsektion 3 oder Drehzahlsektion 7 (DI) = 20 Hz
- Rückwärtslauf: *Drehzahlsektion 3* oder *Drehzahlsektion 7* (DI) = 20 Hz

Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (DI)
- Fern-START/STOP: DI-Modus = Impulssignal
- Modus für Sollwertvorgabe = Sollwertvorgabe über PLS

Sollwertvorgabe: Beispiel

- Vorwärtslauf: *Kommunikationsprotokoll* (PLS) = 20 Hz
- Rückwärtslauf: *Kommunikationsprotokoll* (PLS) = 20 Hz

Parametereinstellungen:

- Freigabe Rückwärtslauf = Aktiviert
- Betriebsart = Fernbedienung (DI)
- Fern-START/STOP: DI-Modus = Impulssignal
- Modus für Sollwertvorgabe = Sollwertvorgabe über HMI

Sollwertvorgabe: Beispiel

• Vorwärtslauf: *Frequenz eingeben* (HMI) = *20 Hz*

BETRIEBSANLEITUNG - MVH2.0_BA_1.0.1_de

• Rückwärtslauf: *Frequenz eingeben* (HMI) = – *20 Hz*

Die folgende Abbildung zeigt das Funktions-/Zeit-Diagramm für die Varianten 7, 8 und 9 eines Motor-Rückwärtslaufs:

8 START/STOP-STEUERUNG ÜBER DIGITALE EINGÄNGE (DI: IMPULSSIGNAL) UND SOLLWERTVORGABE ÜBER PLS

> 9 START/STOP-STEUERUNG ÜBER DIGITALE

> > TOUCHSCREEN (HMI)

EINGÄNGE (DI: IMPULSSIGNAL)

UND SOLLWERTVORGABE ÜBER

7 START/STOP-Steuerung und

Sollwertvorgabe über

DIGITALE EINGÄNGE (DI:

IMPULSSIGNAL)

5.1.8 MS-NETZAUSFALL

Der FU kann so konfiguriert werden, dass er bei Ausfall der Netzspannung entweder:

- unverzögert abschaltet oder
- einen automatischen Neustart nach Netzwiederkehr durchführt oder
- unter Einsatz der kinetischen Pufferung weiter betrieben werden.

UNVERZÖGERTE ABSCHALTUNGFür die Parametereinstellung Schnellabschaltung bei MS-Netzausfall = Aktiviert, schaltetDES FUder FU bei einem Netzausfall unverzögert ab.

NEUSTART NACH NETZWIEDERKEHR Für die Parametereinstellung *Automatikstart nach MS-Ausfall = Aktiviert* führt der FU nach Wiederkehr der MS-Netzspannung automatisch einen Neustart durch.

Der FU führt nur dann einen Neustart aus, wenn die Netzspannung innerhalb der mit Parameter *Max. zul. MS-Netzausfalldauer* eingestellten Zeit wiederkehrt und *kein* STOP-Befehl aktiv ist.

٢		
L	=	
L		
L		
L		

HINWEIS

Für die Parametereinstellung *Max. zul. MS-Netzausfalldauer = 100s* erfolgt *kein* FU-Neustart.

FRT-Vorgang Der FU schaltet *nicht* ab. Die Steuerung und Regelung des FU nutzt die kinetische Rotationsenergie der Antriebs, um die FU-eigenen Verluste im FU-Leistungskreis zu kompensieren. Hierzu wird die Ausgangsfrequenz des FU kontrolliert abgesenkt, um die benötigte Energie in den FU einzuspeisen (Leistungsrückspeisung durch generatorischen Betrieb des Motors).

> Die *maximale Betriebszeit bei Netzausfall* ist abhängig von der kinetischen Rotationsenergie des Antriebs.

> Der FU bleibt nur für den mit Parameter *Max. zul. FRT-Dauer eingestellten Zeit* in Betrieb und solange *kein* STOP-Befehl aktiv ist.

1	-	_	_	~
	Ŀ	_	_	- `
	Ľ	-	_	_
		_	_	_
		_	_	-
	L			

HINWEIS

- FRT-Vorgang: Durchfahren eines Netzausfalls, engl.: fault ride through, FRT
- Für die Parametereinstellung Max. zul. FRT-Dauer = 0 ms ist die FRT-Funktion deaktiviert.
- Für den FRT-Vorgang muss sichergestellt werden, dass eine sichere Steuerspannung (z. B. über eine USV) zur Verfügung steht.

Die folgende Tabelle beschreibt den Zusammenhang zwischen dem FU-Zustand vor und nach dem Netzausfall in Abhängigkeit der verschiedenen Parametereinstellungen:

Systemstatus des FU vor dem MS- Netzausfall	Dauer des Netzaus- falls T1	Parametereinstellungen	Systemstatus des FU nach dem MS- Netzausfall
FU-Bereit / FU-Betrieb	-	Schnellabschaltung bei MS-Netzausfall = Aktiviert	MS nicht bereit
FU-Bereit	T1 < T2	Schnellabschaltung bei MS-Netzausfall = Deaktiviert	FU-Bereit
FU-Bereit	T1 > T2	Schnellabschaltung bei MS-Netzausfall = Deaktiviert	MS nicht bereit, MS-Netzausfall
FU-Betrieb	T1 < T2	Schnellabschaltung bei MS-Netzausfall = Deaktiviert; Automatikstart nach MS-Ausfall = Deaktiviert	Bereit

Systemstatus des FU vor dem MS- Netzausfall	Dauer des Netzaus- falls T1	Parametereinstellungen	Systemstatus des FU nach dem MS- Netzausfall
FU-Betrieb	T1 < T2	Schnellabschaltung bei MS-Netzausfall = Deaktiviert; Automatikstart nach MS-Ausfall = Aktiviert	FU-Betrieb
FU-Betrieb	T1 > T2	Schnellabschaltung bei MS-Netzausfall = Deaktiviert; Automatikstart nach MS-Ausfall = Deaktiviert	MS nicht bereit, MS-Netzausfall

Tab. 5-2 FU-Zustand vor und nach MS-Netzausfall

T1: Dauer des MS-Netzausfalls

T2: Zeitfenster für eine maximal zulässige Netzausfalldauer, in dem der FU einen automatischen Neustart durchführen kann, sofern kein STOP-Befehl aktiv ist. (s. Parameter Max. zul. MS-Netzausfalldauer)

5.1.9 MOTORÜBERLASTUNGSSCHUTZ (THERMISCHES ABBILD)

Um Motorschäden aufgrund von Überlast oder Langzeit-Überstrombetrieb zu vermeiden, schützt der FU den Motor mit einem voreingestellten, thermischen Motorüberlastungsmodell (thermisches Abbild) mit inverser Auslöseverzögerungszeit-Charakteristik:

$$\int_{t_0}^t [(\frac{I}{I_N})^2 \cdot 1] dt \ge k$$

mit: I: Betriebsstrom des Motors

- IN: Motornennstrom
- t: inverse Überstromauslöseverzögerungszeit
- k: Überlastfaktor

Wenn der *Motorstrom* / den *Motornennstrom* /_N *überschreitet*, wird die Schutzfunktion mit inverser Auslöseverzögerungszeit-Charakteristik angeregt. Je größer der *Motorstrom* / ist, desto kürzer ist die *Verzögerungszeit t* bis zur Schutzauslösung (FU-Abschaltung):

Abb. 5-10 Inverse Auslöseverzögerungszeit-Charakteristik

Die folgende Tabelle gibt Aufschluss über die *maximal zulässige Überlastdauer* des Motors bei verschiedenen Überlasten:

Überlastung des Motors I/IN [%]	Max. zulässige Dauer der Überlast t [s]
110	251
120	120
130	76
140	55
150	42
200	18

 Tab. 5-3
 Max. zulässige Überlastdauer des Motors für verschiedene Überlasten

ACHTUNG

Wenn der FU-Ausgangsstrom 150% des FU-Ausgangsnennstromes übersteigt, wird der FU abschalten, bevor die max. zulässige Überlast des Motors erreicht ist.

5.1.10 AUTOMATISCHER RAMPENEINGRIFF

STROMKRITERIUM – ÜBERSTROM

Überschreitet der FU-Ausgangsstrom während des Beschleunigungs- oder Abbremsvorgangs:

- den mit Parameter Motor-Überlastlimit eingestellten Wert oder
- den definierten, *maximal zulässigen Stromgrenzwert (Stromanregelimit)* von 150 % des FU-Ausgangsnennstroms,

unterbricht der FU den Beschleunigungs-/Abbremsvorgang und hält seine Ausgangsfrequenz auf dem aktuellen Wert. Fällt der FU-Ausgangsstrom unter den definierten *Stromrücksetzwert*, wird der Beschleunigungs- bzw. Abbremsvorgang fortgesetzt.

HINWEIS

Der maximal zulässige Stromgrenzwert und der Stromrücksetzwert sind im FU fest eingestellt. Diese Einstellungen können vom Benutzer nicht verändert werden.

SPANNUNGSKRITRIUM – ÜBERSPANNUNG

Wenn der FU den Motor abbremst, kann eine übermäßige Trägheit der Last oder eine zu kurze Abbremszeit dazu führen, dass die Gleichspannungszwischenkreisspannung in den Leistungszellen ansteigt und der FU gemäß Fehler: Leistungszellen-Überspannung abschaltet.

Um dies zu vermeiden, überwacht der FU permanent:

• die Gleichspannungszwischenkreisspannung der Leistungszellen.

Wenn die Gleichspannungszwischenkreisspannung den definierten, maximal zulässigen Spannungsgrenzwert (Spannungsanregelimit) überschreitet, unterbricht der FU den Abbremsvorgang und hält seine Ausgangsfrequenz auf dem aktuellen Wert. Fällt der Gleichspannungszwischenkreisspannung der Leistungszellen wieder unter den definierten Spannungsrücksetzwert, wird der Abbremsvorgang fortgesetzt.

Abb. 5-12 FU-Rampeneingriff: Spannungskriterium

mit: U: Spannung im Gleichspannungszwischenkreis der Leistungszellen f: FU-Ausgangsfrequenz

Spannungsrücksetzwert

Motorstop: Abbremsvorgänge (1: aktiv; 0: nicht aktiv)

HINWEIS

- HINWEIS
- Der maximal zulässige Grenzwert der Gleichspannungszwischenkreisspannung und der Spannungsrücksetzwert sind im FU voreingestellt. Er kann vom Benutzer nicht eingestellt werden.
- Einstelloptionen s. Parameter Verstärkung Motor-Übererreg. und Motor-Übererreg. ab Frequenz

5.1.11 ÜBERBRÜCKTER BETRIEB (BYPASS) DES FU

Der FU kann im Fehlerfall vollständig überbrückt werden (FU-Bypass). Nach Abschaltung des defekten FU läuft der Antrieb aus. Das Wiederzuschalten des Antriebes kann direkt am Netz erfolgen (engl.: direct online, DOL). Die minimale Wartezeit bis zur Wiederzuschaltung ist abhängig von der Motorgröße und liegt typischerweise zwischen 250 ms und 750 ms. Es ist sicherzustellen, dass die Motor-Restspannung auf ein Minimum abgesunken ist, um ein Aufschalten in Phasenopposition zu verhindern.

Der FU kann entweder manuell oder automatisch überbrückt werden.

-	_	
L	—)	
L	=	
Т		
Т		

HINWEIS

Die FU-Bypass Funktion erfordert zusätzliche Hardware (Bypass-Schrank).

5.1.12 ÜBERBRÜCKTER BETRIEB (BYPASS) DER LEISTUNGSZELLE

Die Leistungszellen jeder Phase sind in Reihe geschaltet. Wenn eine Leistungszelle ausfällt, kann die ausgefallene Zelle überbrückt werden (Kurzschließen des Leistungszellenausgangs bzgl. der Klemmen L1 und L2), um den FU-Betrieb aufrechtzuerhalten.

SCHUTZ-BYPASS ODER IGBT-BYPASS

Defekte Leistungszellen können überbrückt werden (integrierter Zellen-Bypass). Je nach Bauart der Leistungszellen wird entweder:

- ein integrierter *Schütz-Bypass* oder
- ein integrierter *IGBT-Bypass*

verwendet, um eine fehlerhafte Zelle zu überbrücken.

- *Schütz-Bypass* Bei Leistungszellen mit *Schütz-Bypass* sind Schließer-Kontakte des Schütz-Bypasses parallel zum Ausgang einer jeden Leistungszelle (Anschlüsse L1 und L2) geschaltet (s. Abb. 3-41 Elektrisches Prinzipschaltbild einer Leistungszelle").
 - *IGBT-Bypass* Bei Leistungszellen mit *IGBT-Bypass* sind jeweils zwei in Reihe geschaltete IGBTs parallel zum Ausgang einer jeden Leistungszelle (L1 und L2) geschaltet (s. Abb. 3-41 Elektrisches Prinzipschaltbild einer Leistungszelle).

Stellt der FU den *Ausfall einer Leistungszelle* fest, sperrt der FU sofort die H-Brücken-IGBT-Ausgänge von der fehlerhaften Leistungszelle und sendet einen Einschalt-Befehl an den entsprechenden Schütz-Bypass bzw. IGBT-Bypass. Der FU kann dann den Anlagenbetrieb entweder:

- über die Funktion Nullpunktverschiebung mit reduzierter Leistung fortsetzen oder
- abh. von der FU-Ausstattung, mit der *Ausführung n+1* Leistungszellen ohne Leistungsreduzierung

den Anlagenbetrieb unterbrechungsfrei fortführen.

NEUTRALPUNKTVERSCHIEBUNG

FOLGEN DES AUSFALLS EINER LEISTUNGSZELLE

	_	
	—)	
l		

HINWEIS

- Es erfolgt ausschließlich die Überbrückung der fehlerhaften Leistungszelle.
- Die Überbrückung einer einzelnen Leistungszelle bewirkt eine Spannungsunsymmetrie am FU-Ausgang.
- Um solche Auswirkungen auf die Ausgangsspannung zu kompensieren, verwendet der MVH 2.0 die Funktion Nullpunktverschiebung.
- Die Verwendung der Funktion Nullpunktverschiebung setzt immer Leistungszellen voraus, die entweder mit einem Schütz-Bypass oder einem IGBT-Bypass ausgestattet sind.

Die *Überbrückung* einer fehlerhaften Leistungszelle wirkt sich *nicht* auf die Stromausgangsleistung des FU aus, sie reduziert jedoch die Bemessungsspannung der betroffenen Phase.

Fällt in einer Phase eine Leistungszelle aus, wird nur diese Leistungszelle überbrückt; alle anderen Leistungszellen sind weiter in Betrieb. Bei der Funktion *Nullpunktverschiebung* wird der Neutralpunkt der FU-Ausgangsspannung neu ausgerichtet. Durch eine Anpassung der Phasenwinkel für die Phasenspannungen am FU-Ausgang zueinander wird die Symmetrie der Außenleiterspannungen wieder hergestellt. Obwohl die Anzahl der in jeder Phase arbeitenden Leistungszellen unterschiedlich ist und die Phasenspannungen am FU-Ausgang unsymmetrisch sind, sind die Außenleiterspannungen hingegen symmetrisch und der Motor kann risikolos weiter betrieben werden.

STÖRUNGSFREIES, SYMMETRISCHES SPANNUNGSSYSTEM Die folgende Abbildung zeigt das Beispiel für ein *symmetrisches Spannungssystem* im Betrieb mit jeweils *fünf*kaskadierten Leistungszellen in jeder Phase. Alle Leistungszellen arbeiten störungsfrei. Die Phasenverschiebung der einzelnen Phasenspannungen zueinander beträgt 120°.

Abb. 5-13 Phasenwinkel eines 5-stufigen FU – Störungsfreier Betrieb

UNSYMMETRISCHES SPANNUNGSSYSTEM Fällt eine *Leistungszelle* aus und wird *überbrückt*, bildet sich durch die Verringerung des Betrages der betroffenen Phasenspannung am FU-Ausgang ein *unsymmetrisches* Spannungssystem aus.

Die folgende Abbildung zeigt das *unsymmetrische Spannungssystem* für eine fehlerhafte, gebrückte Leistungszelle in der Phase A.

Abb. 5-14 Phasenwinkel eines 5-stufigen FU – fehlerhafte, gebrückte Leistungszelle in Phase A

AUSGLEICH DER SPANNUNGSUNSYMMETRIE

Um die *Spannungsunsymmetrie*, die durch den geringeren Betrag der Phasenspannung A verursacht wurde, auszugleichen, verwendet der MVH 2.0 einen Algorithmus zur *Verschiebung des Neutralpunkts*.

In dem vorstehenden Beispiel eines 5-stufigen FU sind 14 der 15 Leistungszellen weiter in Betrieb. Die Phasenwinkel der Phasenspannungen werden so ausgeregelt, dass sich:

- die Phasenwinkeldifferenz zwischen den Phasenspannungen <u>UNA</u> und <u>UNB</u> sowie <u>UNA</u> und <u>UNC</u> zu 126,4 ° und
- die Phasenwinkeldifferenz zwischen den Phasenspannungen <u>UNB</u> und <u>UNC</u> zu 107,2 ° ergibt.

Diese Phasenverschiebung führt zu einem *symmetrischen* Spannungssytem am FU-Ausgang, welches hinsichtlich des Betrags der Außenleiterspannungen noch 92,9 % der Bemessungsspannung des FU entspricht.

Abb. 5-15 Phasenwinkel eines 5-stufigen FU – Anwendung der Funktion "Nullpunktverschiebung"

HINWEIS	5
---------	---

=	×
	~

- > Für Drehzahlen bis 92,9% der Motornenndrehzahl liegt keine Leistungsreduzierung vor.
- Für Drehzahlen > 92,9% der Motornenndrehzahl reduziert sich das maximale Motordrehmoment als quadratische Funktion der Motorspannung
- > Bei der Motorauslegung B/F ist ein Weiterbetrieb mit erhöhtem Motorstrom auch unter Nennlast möglich.

REDUNDANTER ZELLEN-BYPASS (N+1)

Sämtliche Leistungszellen des FU sind mit einer Bypass-Einheit (IGBT-Bypass oder Schütz-Bypass) ausgestattet. Jede Phase besitzt eine zusätzliche (redundante) Leistungszelle, die während des FU-Betriebs auch einen Beitrag zur Bildung der FU-Ausgangsspannung leistet. Fällt eine Leistungszelle während des Betriebs aus, sendet die Steuereinheit entsprechende Steuersignale an die integrierten Bypass-Einheiten der entsprechenden Zellennummer in allen drei Phasen. Durch die redundante Leistungszelle steht die volle Höhe der FU-Ausgangsspannung weiterhin zur Verfügung.

6 WARTUNG

WARNUNG

Gefahr durch elektrischen Schlag!

Durch die in den Kondensatoren der Leistungszellen gespeicherte Energie kann an den Klemmen L1 und L2 von jeder Leistungszelle noch eine Restspannung in der Höhe der Leistungszellen-Nennspannung anliegen!

- Führen Sie eine Fehlersuche oder Wartung am FU niemals bei eingeschalteter MS-Spannungsversorgung durch.
- Stellen Sie sicher, dass Sie den FU ausschalten, bevor Sie die Schranktür öffnen, und befolgen Sie alle einschlägigen Verriegelungs- und Sicherheitsregeln.
- Es sind die fünf Sicherheitsregeln der Elektrotechnik anzuwenden.
- Um Verletzungen durch die Restspannung der Hauptstromkreiskondensatoren zu vermeiden, warten Sie mindestens 10 Minuten nach dem Abschalten des FU und vergewissern Sie sich, dass die Spannungsanzeige erloschen ist, bevor Sie Reparatur-, Wartungs- und Inspektionsarbeiten durchführen.
- Jegliche Reparatur-, Wartungs- und Inspektionsarbeiten darf nur von qualifiziertem und geschultem Fachpersonal durchgeführt werden.

6.1 ROUTINEINSPEKTION

Die Routineinspektion ist gemäß den folgenden Inspektionsplan *jährlich* durchzuführen.

Prüfgegenstand	Prüfkriterium	Werkzeug	Beurteilungskriterium
	• Temperatur	Thermometer	 -5 +40 C FU-Leistungsreduzierung für den Einsatz zwischen 40 50 C, Reduzierung des Nennausgangsstroms um 1 % pro 1 °C.
	Feuchtigkeit	Hygrometer	• 5 95 Hz nicht kondensierend
Betriebsumgebung	 Staub, Fett, Wasser und Tropfen 	Sichtprüfung	Keine StaubablagerungenKeine Fettablagerungenkeine Wasserleckagen
	Vibration	 Spezial-Testgerät 	• 0,15 mm, 9 58 Hz, max. 3 m/s ²
	• Gas	Spezial-Testgerät,Geruchstest,Sichtprüfung	Keine Geruchsbildung,kein abnormaler chemischer Geruch oder Rauch
	• Hitze	Spezial-Testgerät,Thermometer	 Die Austrittstemperatur ist normal
FU	Geräusche	Spezial- Schallmessgerät,Hörtest	 Keine ungewöhnlichen Geräu- sche, Vibrationen oder Quiet- schen
	• Gas	Spezial-Testgerät,Geruchstest	 Keine Geruchsbildung, kein abnormaler chemischer Geruch oder Rauch

ROUTINE-INSPEKTIONSPLAN

Prüfgegenstand	Prüfkriterium	Werkzeug	Beurteilungskriterium
	 Äußeres Erschei- nungsbild 	Sichtprüfung	 Schränke und Türen sind in- takt, ohne Mängel
	Kühlkanal	Sichtprüfung	 Kein Schmutz oder andere Fremdkörper die den Luftkanal blockieren
	Eingangs- strom	Amperemeter	 Innerhalb des normalen Ar- beitsbereichs (siehe Typen- schild)
	• Eingangs- spannung	Voltmeter	 Innerhalb des normalen Ar- beitsbereichs (siehe Typen- schild)
	 Ausgangs- strom 	Amperemeter	 Innerhalb des normalen Ar- beitsbereichs oder zulässiger kurzfristiger Überlastbereich
	 Ausgangs- spannung 	Voltmeter	 Im Nennbereich f ür ange- schlossenen Motor
	• Hitze	Spezial-Testgerät,Geruchstest	 Keine abnorm hohe Tempera- tur keine Überhitzung kein Brandgeruch
Motor	Geräusche	 Spezial- Schallmessgerät, Hörtest 	Keine ungewöhnlichen Geräu- sche, Vibrationen oder Quiet- schen
	Vibration	Spezial-Testgerät	 Innerhalb des normalen Ar- beitsbereichs (siehe Typen- schild)

Tab. 6-1 Routine-Inspektionsplan

6.2 ROUTINEWARTUNG

Die nachstehenden Wartungsarbeiten sollten je nach Einsatzbedingungen des FU *regel-mäßig* durchgeführt werden.

1		ŀ
	=	
	=	

HINWEIS

- Die regelmäßige Wartung erfolgt alle drei bis sechs Monate. Wenn sich der FU in einer staubigen Umgebung befindet, sollte der Filter regelmäßig gereinigt oder ausgetauscht werden.
- Protokollieren Sie den Betriebszustand des FU (s. Tabelle "Tab. 6-3 FU-Betriebsprotokoll"). Wenn eine Störung auftritt, zeichnen Sie den Fehlerzustand auf, finden Sie die Ursache heraus und beheben Sie das Problem, bevor Sie den FU wieder einschalten.

ROUTINE-WARTUNGSPLAN

Prüfgegen- stand	Prüfkriterium	Werkzeug	Beurtellungskriterium
FU	 Hauptstromkreisan- schlüsse 	SchraubenschlüsselDrehmomentschlüsselSichtprüfung	 Bolzen und Schrauben richtig und fest angezogen, keine Beschädigungen an der Leitung oder der Kabelschuhe
	• PE/Erdungsanschluss	SchraubenschlüsselDrehmomentschlüsselSichtprüfung	 Schrauben fest ange- zogen, keine Beschädigungen an der Leitung

Prüfgegen- stand	Prüfkriterium	Werkzeug	Beurteilungskriterium
	 Steuerkreisanschlüsse 	SchraubenzieherSchraubenschlüsselSichtprüfung	 Drähte korrekt einge- steckt, Schrauben fest ange- zogen, keine Beschädigung der Drähte oder Lei- tungen
	Interne Verbindungsleitungen,Steckverbinder	SchraubenschlüsselDrehmomentschlüssel	 Leitungen fest einge- steckt; Steckverbindungen verriegelt
	 Befestigungsschrau- ben 	SchraubendreherAbstandsbolzen	 Sitz des Abstandsbolzens
	Staub/Schmutz	StaubsaugerDruckluftluft	Kein Staub. Schmutz oder Fasern
	Fremdpartikel	Sichtprüfung	 Keine Fremdkörper in Schränken oder Kanälen
Motor	 Isolationsprüfungen 	 Isolationsprüfgerät 	 Messwerte innerhalb der Spezifikation

Tab. 6-2 Routine-Wartungsplan

FU-EINSCHALTTEST UND BETRIEBSPROTOKOLL Wenn der FU über einen längeren Zeitraum *außer Betrieb* gesetzt wird, sollte nach jeweils *sechs Monaten* ein *Einschalttest* durchgeführt werden. Die Einschaltdauer während dieses Tests sollte nicht weniger als eine Stunde betragen.

Bei einer *Standzeit* des FU *größer als sechs Monate* beträgt, ist es ratsam die Leistungszellen mit Hilfe der 400 VAC Hilfswicklung des Transformators langsam vorzuladen. Dabei ist die Spannung langsam über einen Spannungsregler auf Nennspannung zu erhöhen.

1		
	=	

HINWEIS

Falls während des FU-Einschalttests eine *Störung* auftritt, zeichnen Sie den Fehlerzustand auf, ermitteln Sie die Ursache und beheben Sie die Störung, bevor Sie den FU erneut einschalten.

Der Betriebszustand des FU ist gemäß dem nachstehenden Betriebsprotokoll zu protokollieren.

	Datum
	Temperatur im Innenbereich [°C]
	Trafo-Temperatur[°C]
	Temperatur Leistungszellenschrank[°C]
	Frequenz im Betrieb[Hz]
	FU-Ausgangsstrom [A]
	FU-Ausgangsspannung [V]
	Fehlerart und -beschreibung

Tab. 6-3 FU-Betriebsprotokoll

6.3 WARTUNG VON ERSATZ-LEISTUNGSZELLEN

Bei Leistungszellen mit Elektrolytkondensatoren sollten die Ersatz-Leistungszellen alle sechs Monate unter Spannung gesetzt und betrieben werden, um ein Austrocknen der Kondensatoren zu verhindern. Bei Reservezellen ist sicherzustellen, dass die Formierung der Zwischenkreiskondensatoren vor dem Einbau und Anschluss in den Umrichter erfolgt. Dabei ist die Spannung an den Klemmen R, S, T langsam über einen Spannungsregler auf Nennspannung zu erhöhen.

7 INSTANDSETZUNG

WARNUNG

Gefahr durch elektrischen Schlag!

Durch die in den Kondensatoren der Leistungszellen gespeicherte Energie kann an den Klemmen L1 und L2 von jeder Leistungszelle noch eine Restspannung in der Höhe der Leistungszellen-Nennspannung anliegen!

- Führen Sie eine Fehlersuche oder Wartung am FU niemals bei eingeschalteter MS-Spannungsversorgung durch.
- Stellen Sie sicher, dass Sie den FU ausschalten, bevor Sie die Schranktür öffnen, und befolgen Sie alle einschlägigen Verriegelungs- und Sicherheitsregeln.
- Es sind die fünf Sicherheitsregeln der Elektrotechnik anzuwenden.
- Um Verletzungen durch die Restspannung der Hauptstromkreiskondensatoren zu vermeiden, warten Sie mindestens 10 Minuten nach dem Abschalten des FU und vergewissern Sie sich, dass die Spannungsanzeige erloschen ist, bevor Sie Reparatur-, Wartungs- und Inspektionsarbeiten durchführen.
- Jegliche Reparatur-, Wartungs- und Inspektionsarbeiten darf nur von qualifiziertem und geschultem Fachpersonal durchgeführt werden.

7.1 STÖRUNGSSUCHE UND STÖRUNGSBESEITIGUNG

Der universelle MVH 2.0 verfügt über eine umfassende Störungsüberwachung sowie einen kompletten Schutzmechanismus und generiert entsprechende Meldungen zu den detektierten Störungs-Ereignissen.

Die Störungs-Ereignisse können in zwei Kategorien unterteilt werden:

- Alarm-Ereignisse
- Fehler-Ereignisse
- **ALARMMELDUNGEN** Wenn ein Alarm-Ereignis aktiv ist, meldet der FU das entsprechende Ereignis als Alarmmeldung, der FU wird dabei nicht abgeschaltet. Der FU kann eingeschaltet, gestartet oder der Betrieb kann aufrechterhalten werden.
- FEHLERMELDUNGENWenn ein Fehler-Ereignis aktiv ist, meldet der FU das entsprechende Ereignis als Fehler-
meldung. Der FU wird dabei sofort abgeschaltet; d.h. die Mittelspannungsversorgung für
den FU wird unterbrochen. Die Fehlermeldungen werden im Ereignisrekorder aufge-
zeichnet und das FU-System wird im Fehlerzustand gegen Einschaltung verriegelt.
- **Störungsermittlung** Bevor der Kundendienst in Anspruch genommen wird, kann der Anwender zunächst selbst eine Inspektion des FU-Systems durchführen. Eine Orientierung bei der Suche nach der Störungsursache gibt einerseits der Text der Alarm- oder Fehlermeldung, anderseits die in den folgenden Abschnitten aufgelisteten Ursachen sowie deren Abstellmaßnahmen.

Sollte der Kundendienst dennoch erforderlich sein, wenden Sie sich bitte an AuCom oder Ihren örtlichen Lieferanten.

7.1.1 ALARMMELDUNGEN

Wenn ein *Alarm-Ereignis* eintritt, erzeugt der FU eine *Alarmmeldung* und zeigt diese im Display der Bedieneinheit an. Die Anzeigeleuchte *Störung* blinkt.

Der Status der Alarmmeldung wird automatisch gelöscht, wenn die Ursache, die den Alarm verursacht hat, nicht mehr vorhanden ist.

Wenn ein Alarm-Ereignis während des Betriebs auftritt, wird der FU *nicht* abgeschaltet. Wenn ein Alarm auftritt, bevor Mittelspannung am FU anliegt, können über den Parameter *MS-Zuschaltung bei Alarm möglich* zwischen zwei Einstelloptionen gewählt werden:

- Für die Parametereinstellung *MS-Zuschaltung bei Alarm möglich* = *Aktiviert* kann der FU mit Mittelspannung versorgt werden.
- Für die Parametereinstellung *MS-Zuschaltung bei Alarm möglich* = *Deaktiviert*, wird die Mittelspannung *nicht* aufgeschaltet.

Die folgenden Alarmmeldungen sind im FU verfügbar:

Alarmmeldungen
Rückmeldung Ausfall Analogeingang
Alarm: kein Signal am Analogeingang
Alarm: Türverriegelung
Alarm: Luftfilter reinigen
Alarm: Verbindungsfehler Steuereinheit
Alarm: Lüfterausfall
Alarm: Erregerstromdifferenz > 10%
Alarm: Lüfter-Fehlerschleife
Alarm: Lüfter Spannungsausfall
Alarm: Motor-Überlast
Alarm: Leistungszelle: Bypass
Alarm: Übertemperatur Zellenschrank
Alarm: Türalarm Zellenschrank
Alarm: Verbindungsfehler HMI
Alarm: Türalarm Trafoschrank
Alarm: Trafo: Wärmetauscher-Leckage
Alarm: Trafo-Übertemperatur

Tab. 7-1Liste der Alarmmeldungen

ALARMMELDUNGEN – URSACHEN UND ABSTELLMABNAHMEN

Verwenden Sie diesen Abschnitt zur Fehlersuche, wenn der FU ein *Alarm-Ereignis* meldet. Die *Alarmmeldungen* sind in alphabetischer Reihenfolge aufgelistet.

Alarmmeldung	Ursache für Alarmmeldung	Abstellmaßnahme
Alarm: kein Istwertsignal	Kein analoges Signal für den Drehzahlistwert	 Messen, ob ein analoges Signal vorhanden ist Verdrahtung des analogen Signals auf Fehler überprü- fen und ggf. korrigieren
am Analogeingang Al T	Fehlerhafte Spannungsversor- gung	 Messen der Spannungsver- sorgung und ggf. korrigie- ren

Alarmmeldung	Ursache für Alarmmeldung	Abstellmaßnahme	
Alarm: kein Sollwertsignal am Analogeingang Al 1	Kein analoges Signal für den Drehzahlsollwert	 Messen, ob ein analoges Signal vorhanden ist Verdrahtung des analogen Signals auf Fehler überprü- fen und ggf. korrigieren 	
	Fehlerhafte Spannungsversor- gung	Messen der Spannungsver- sorgung und ggf. korrigie- ren	
Alarm: Türverriegelung	Türkontaktschalter liefert bei geschlossener Schranktür kein Signal	 Prüfen der korrekten Funk- tion des Türkontaktschal- ters und ggf. austauschen Prüfen der korrekten Aus- richtung des Türkontakt- schalters und ggf. nachjus- tieren Verdrahtung des Türkon- taktschalters auf Fehler überprüfen und ggf. korri- gieren 	
	Defekter digitaler Eingang (DI) der I/O-Schnittstelleneinheit	Wenden Sie sich an den Hersteller!	
	Filter sind verschmutzt und/oder verstopft	 Filter reinigen und ggf. Fremdpartikel entfernen 	
Alarm: Luftfilter reinigen	Zu kurze Einstellung des Zeit- intervalls des Parameters <i>Filter-Reinigungsintervall</i>	Längeres Zeitintervall ein- stellen	
	Fehlerhafte Kommunikations- leitung zwischen Hauptpro- zessor-Baugruppe AP4 und I/O-Schnittstelleneinheit	 Sicherstellen, dass das Netzwerkkabel richtig eingesteckt ist Netzwerkkabel prüfen und ggf. austauschen 	
	Ausfall der I/O- Schnittstelleneinheit	 Polarität der angeschlossenen Spannungsversorgung prüfen und ggf. korrigieren I/O-Schnittstelleneinheit ist defekt ⇒ wenden Sie sich an den Hersteller! 	
Alarm: Verbindungsfehler Steuereinheit	Ausfall der Hauptprozessor- Baugruppe AP4	 Spannung am Netzteil der Baugruppe messen ⇒ Messwert muss im Bereich von 24 V DC ± 20 % liegen; ggf. Spannungsversorgung korrigieren Hauptprozessor-Baugruppe ist defekt ⇒ wenden Sie sich an den Hersteller! 	
	Die Softwareversionen von Hauptprozessor- und I/O- Schnittstelleneinheit sind nicht kompatibel	Wenden Sie sich an den Hersteller!	
	Erregerstromdifferenzlimit = 10 %		
	Falsche Parametereinstellun- gen des <i>Erregersystems</i>	 Parametereinstellungen korrigieren 	
Alarm: Erregerstromdifferenz > 10%	 Falsche Parametereinstel- lung des Analogeingangs Al 3 (Rückmeldung des Erre- gerstrom-Istwertes) Defekter Analogeingang Al 3 Leitungsbruch von Al 3 	 Prüfen ob, die Differenz zwi- schen dem gespeisten Erre- gerstrom und dem rückge- meldetem Erregerstrom- wert größer als 10 % be- trägt, ggf. korrigieren 	

Alarmmeldung	Ursache für Alarmmeldung	Abstellmaßnahme
		 Parametereinstellungen korrigieren Verdrahtung des Analogein- gangs Al 3 prüfen und ggf. korrigieren
	Die Mittelspannung liegt nicht am FU an und der Parameter <i>Manuelle Lüftersteuerung</i> ist auf <i>STOP</i> eingestellt	 Sobald die Mittelspannung auf den FU geschaltet wird, werden die Lüfter aktiviert und die Alarmmeldung wird automatisch gelöscht.
Alarm: Lüfterausfall	Fehler in der Verdrahtung der Lüfterkreise	 Verdrahtung der Lüfterkreise prüfen und ggf. korrigieren
	Wenn der Parameter <i>MS- Zuschaltung bei Alarm</i> <i>möglich</i> auf <i>Aktiviert</i> eingestellt ist und die Ventilatoren nicht laufen, erfolgt die Alarmmeldung <i>Alarm: Lüfterausfall</i>	•
Alarm: Lüfter-Fehler-	Ausfall Motorschutzschalter für den Lüfter	 Motor durchmessen auf möglichen Windungs- bzw. Erdschluss und ggf. Lüfter tauschen Lüfterfilter auf Verschmut- zung prüfen und ggf. tau- schen
schleife	Ansprechen der Temperatur- überwachung im Lüftermotor	 Lüfter auf Leichtgängigkeit prüfen und ggf. Lüfter tau- schen Lüfterfilter auf Verschmut-
		zung prüfen und ggf. tau- schen
	Leitungsschutzschalter oder Thermorelais hat ausgelöst	 Prüfen der korrekten Funk- tion des Leitungsschutz- schalters und des Thermo- relais und ggf. austauschen Sicherstellen, dass kein Überlastungszustand des Lüfters vorliegt.
Alarm: Lüfter Spannungsausfall	Lüfterschütz schaltet nicht	 Verdrahtung des Lüfter- schützes auf Fehler über- prüfen und ggf. korrigieren Prüfen der korrekten Funk- tion des Lüfterschützes und ggf. austauschen
	Fehlerhafte Hilfskontakte des Lüfters	Austausch des Lüfters
	Motorstrom hat Stromlimit der Schutzfunktion überschrit- ten	 FU überschreitet den max. zulässigen Überlastbetrieb ⇒ Last reduzieren und Mo- torstrom überprüfen
Alarm: Motor-Überlast	Eingestellte Beschleunigungs- zeit ist zu kurz	 Einstellwert des Parame- ters <i>Dauer Hochlauframpe</i> erhöhen
	Eingestellte Abbremszeit ist zu kurz	 Einstellwert des Parame- ters <i>Bremsrampe</i> erhöhen
	Falsche Parametereinstellun- gen für Motornennstrom und/ oder Motorleerlaufstrom	 Parametereinstellungen korrigieren

Alarmmeldung	Ursache für Alarmmeldung	Abstellmaßnahme
	Zu große Überlast oder Mo- torblockierung	 Last reduzieren bzw. me- chanisches Problem lösen
	Leistungsklasse des FU ist für die Anforderungen der Anwen- dung zu klein	 Prüfen, ob der Nennstrom des FU-Modells für die Lastcharakteristik des Mo- tors geeignet ist; ggf. an den Hersteller wenden!
	Sicherung hat ausgelöst	Leistungszelle ersetzen
	IGBT einer Leistungszelle de- fekt	Leistungszelle ersetzen
Alarm: Leistungszelle:	Defekter Lichtwellenleiter	Lichtwellenleiter ersetzen
Bypass	Defektes Schütz-Bypass	Schütz-Bypass ersetzen
	Überhitzung einer Leistungs- zelle	Leistungszelle ersetzen
	Schmutz in der Leistungszelle	Leistungszelle ersetzen
	Temperatur	rlimit = 55 °C
Alarm: Übertemperatur Zellenschrank	Ausfall von einem oder meh- reren Lüfter	 Prüfen, ob evtl. der Lei- tungsschutzschalter gefal- len ist. Prüfen der korrekten Funk- tion des Lüfterschützes und der Thermorelais und ggf. austauschen
	Filter sind verschmutzt und/oder verstopft	 Prüfen, indem ein Stück Pa- pier vor die Filter gehalten wird. Wenn das Papier nicht vom Saugluftstrom festge- halten wird, sind die Filter verschmutzt oder verstopft und müssen gereinigt wer- den
	FU war zu lange im Überlast- betrieb	 Last am FU-Ausgang ver- ringern und die auf dem Touchscreen angezeigte Temperatur kontrollieren
	Umgebungstemperatur ist zu hoch	 Reduzieren der Umge- bungstemperatur durch Er- höhung der Kühlung/ Kli- matisierung
Alarm: Türalarm Zellenschrank	Türkontaktschalter liefert bei geschlossener Schranktür kein Signal	 Prüfen der korrekten Funk- tion des Türkontaktschal- ters und ggf. austauschen Prüfen der korrekten Aus- richtung des Türkontakt- schalters und ggf. nachju- stieren Verdrahtung des Türkon- taktschalters auf Fehler überprüfen und ggf. korri- gieren
	Defekter digitaler Eingang (DI) der I/O-Schnittstelleneinheit	Wenden Sie sich an den Hersteller!
Alarm: Verbindungsfehler	Fehlende / unzureichende Spannungsversorgung 24 V DC für die Bedieneinheit (HMI)	 Messen der 24 V DC- Versorgung an der Rückseite des HMI und ggf. korrigieren
HMI	Fehlerhafte Netzwerk-leitung zur Kommunikation mit dem Touchscreen	 Sicherstellen, dass die Netzwerkleitung korrekt eingesteckt ist

Alarmmeldung	Ursache für Alarmmeldung	Abstellmaßnahme	
		 Netzwerkleitung pr üfen und ggf. austauschen 	
	Fehlerhafte Schnittstelle am Touchscreen	Wenden Sie sich an den Hersteller!	
Alarm: Türalarm Trafoschrank	Türkontaktschalter liefert bei geschlossener Schranktür kein Signal	 Prüfen der korrekten Funk- tion des Türkontaktschal- ters und ggf. austauschen Prüfen der korrekten Aus- richtung des Türkontakt- schalters und ggf. nachju- stieren Verdrahtung des Türkon- taktschalters auf Fehler überprüfen und ggf. korri- gieren 	
	Defekter digitaler Eingang (DI) der I/O-Schnittstellenbau- gruppe	Wenden Sie sich an den Hersteller!	
Alarmi Trafa	Wärmetauscher undicht	Wenden Sie sich an den Hersteller!	
Alarm: Trafo: Wärmetauscher-Leckage	Durch Sichtprüfung festge- stellte, andere Ursache für Wassereintritt	 Festgestellte Ursache f ür Wassereintritt beseitigen 	
Temperaturlimit = 95 °C			
	Falsche Parametereinstellung für Temperaturgrenzwert	Parametereinstellung korri- gieren	
	Fehlerhafter Temperatur- sensor	Temperatursensor prüfen und ggf. austauschen	
Alarm: Trafo- Übertemperatur	Ausfall von einem oder meh- reren Lüftern	 Prüfen, ob evtl. der Lei- tungsschutzschalter gefal- len ist. Prüfen der korrekten Funk- tion des Lüfterschützes und der Thermorelais und ggf. austauschen 	
	FU war zu lange im Überlastbetrieb	 Last am FU-Ausgang verringern und die auf dem HMI angezeigte Temperatur kontrollieren 	
	Umgebungstemperatur ist zu hoch	 Reduzieren der Umge- bungstemperatur durch Er- höhung der Kühlung/ Kli- matisierung 	
Fehler: Wasserkühlung	Temperatur des Kühlwassers ist zu hoch	 Parametereinstellungen prüfen und ggf. korrigieren Prüfen, ob der externe Kühlkreislauf zugeschaltet ist und ggf. zuschalten 	
	Ist die Leitfähigkeit zu hoch?	 Prüfen Sie, ob der Leitfähig- keitswert den eingestellten Wert überschreitet. Vergewissern Sie sich, dass der interne Wasser- vollentsalzungsprozess nor- mal funktioniert. 	
	Kühlwasserstand ist zu nied- rig	Kühlkreislauf auf Undichtig- keiten prüfen und ggf. korri- gieren	

Alarmmeldung	Ursache für Alarmmeldung	Abstellmaßnahme
		Kühlwasser nachfüllen
	Fehlerhafte Verdrahtung der Rückmeldungen	 Verdrahtung Rückmeldesig- nalleitungen auf Fehler überprüfen und ggf. korri- gieren

Tab. 7-2Alarmmeldungen – Ursachen und Abstellmaßnahmen

7.1.2 FEHLERMELDUNGEN

Wenn ein *Fehler-Ereignis* auftritt, erzeugt der FU eine *Fehlermeldung*, die auf dem Display der Bedieneinheit (HMI) angezeigt wird und schaltet den FU ab. Gleichzeitig gibt die Steuereinheit den Befehl zum Öffnen des Mittelspannungsschalters oder des Schützes. Der FU zeichnet den Fehler im *Ereignisrekorder* auf. Der FU verbleibt so lange im Fehlerzustand, bis er zurückgesetzt wird. Der FU wechselt erst wieder in den Bereitschaftszustand (Standby), nachdem die Fehlerursache behoben und die Fehlermeldung zurückgesetzt wurde.

Die folgenden Fehlermeldungen sind im FU verfügbar:

Fehlermeldungen
Fehler: Bypass Versorgung
Fehler: Übertemperatur FU-Schrank
Fehler: Zellen-Bypass-Einheiten
Fehler: Steuereinheit nicht freigegeben
Fehler: Testmodus aktiv - MS einschalten verboten
Fehler: Erregersystem
Externer Fehler
Fehler: Lichtwellenleiter (LWL)
Fehler: Sicherungsfall Leistungszelle
LWL-Fehler: Empfangen (RX)
LWL-Fehler: Senden (TX)
Fehler: MS-Netzausfall
Fehler: IGBT Leistungszelle
Falscher Anzeigewert der Eingangsleistung
Fehler: FU-Eingang: Erdschluss
Fehler: FU-Eingang: Phasenunsymmetrie
Fehler: I/O-Schnittstelleneinheit nicht bereit
Fehler: Frequenzschwingungen beim Start mit kleinen Frequenzen
Fehler: Versionsfehler Steuereinheit
Fehler: Motor-Überstrom
Fehler: FU-Ausgang: Erdschluss
Fehler: FU-Überspannung
Fehler: Parametereingabe
Fehler: Türalarm Zellenschrank
Fehler: Leistungszelle
Fehler: Leistungszelle Übertemperatur
Fehler: Leistungszelle Überspannung
Fehler: Steuerspannung Leistungszelle
Fehler: System-Überdrehzahl
Fehler: FU-Ausgang: Phasenunsymmetrie
Fehler: Trafo-Übertemperatur
Fehler: Türalarm Trafoschrank
Fehler: FU-Störung direkt nach dem Einschalten
Fehler: FU-Überstrom
Fehler: FU Startfehler

Tab. 7-3 Liste der Fehlermeldungen

ANALYSE EINER FU-ABSCHALTUNG

Wenn sich eine FU-Abschaltung ereignet, werden auf dem Display der Bedieneinheit die entsprechenden *Fehlermeldungen* angezeigt. Anhand dieser Informationen kann der Bediener geeignete Maßnahmen zur Behebung des Fehlers ergreifen.

Die folgende Abbildung zeigt ein Flussdiagramm zur Vorgehensweise, um die Ursache einer FU-Abschaltung zu analysieren.

Abb. 7-1 FU-Abschaltung: Vorgehensweise zur Fehleranalyse

Gegenstand		Zu prüfen
	Schaltschrank (Synchrone Umschaltung)	 Prüfen Sie, ob die Primärver- drahtung L1, L2, L3 im Schaltschrank richtig ange- schlossen ist.
		Ist der Leistungsschalter ein- geschaltet?
FU & Zubehörausrüstung	Kabeleinführung der Einspei- seleitung	 Prüfen Sie, ob die Verdrah- tung vom Schaltschrank für die Synchrone Umschaltung zum FU korrekt ist.
	Verdrahtung der Verriegelung & Steuerspannung	 Prüfen Sie, ob die Span- nungsversorgung des Regel- kreises im Schrank korrekt funktioniert.
		 Prüfen Sie, ob die Verdrah- tung des MV-Verriegelungs- schalters korrekt ist.
	FU	 Prüfen Sie, ob die Primärver- kabelung vom Transforma- torschrank zum dem Zellen- schrank korrekt ist. Prüfen Sie, ob die EU-Para-
		 meter richtig eingestellt sind. Zeigt der FU-Status <i>MS nicht bereit</i> an?
		• Prüfen Sie, ob die Fehleran- zeige eingeschaltet ist. Behe- ben Sie die Störung, bevor Sie versuchen, den Strom einzu- schalten.
Lasten am FU-Ausgang	Primärverdrahtung	 Prüfen Sie, ob die Verkabe- lung vom FU zum Motor kor- rekt ist.
	Motor	 Last prüfen. Prüfen, ob sich der Motors drehen lässt oder ob er me- chanisch blockiert ist. Prüfen, ob der Motor bei
	l ant	Nennfrequenz normal läuft.
	Last	Pruren Sie, ob die Kunlung des Motors oder der Last ein- wandfrei funktioniert.
Datensatz	Projektspezifische Parameter	Prüfen Sie, ob die richtigen Pro- jektparameter eingestellt sind.

Vor dem Einschalten des FU sollten die folgenden Prüfungen durchgeführt werden:

Tab. 7-4 Empfohlene Prüfungen vor Einschalten des FU

FEHLERMELDUNGEN – URSACHEN UND ABSTELLMABNAHMEN

Verwenden Sie diesen Abschnitt zur Fehlersuche, wenn der FU ein *Fehler-Ereignis* meldet. Die *Fehlermeldungen* sind in alphabetischer Reihenfolge aufgelistet.

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme		
Fehler: Kein Motoranlauf beim Startsignal	DI FU-Freigabe extern (Klemmen -XS1:1,8) ist nicht aktiviert	 Prüfen der Verdrahtung des digitalen Eingangs und ggf. korrigieren 		
	Die RESET-Signaleingänge werden im aktiven RESET- Zustand gehalten	 Die Rücksetzsignale müssen nach dem Rücksetzen des Frequenzumrichters wieder auf ihren Nicht-Rücksetz-Pegel zurückkehren, sonst akzeptiert der Umrichter keinen Startbefehl. 		
	Temperaturlimit = 60 °C			
Fehler: Übertemperatur FU- Schrank)	Ausfall von einem oder mehre- ren Lüftern	 Prüfen, ob evtl. der Leitungs- schutzschalter gefallen ist. Prüfen der korrekten Funktion des Lüfterschützes und der Thermorelais und ggf. austau- schen 		
	Filter sind verschmutzt und/oder verstopft	 Prüfen, indem ein Stück Papier vor die Filter gehalten wird. Wenn das Papier nicht vom Saugluftstrom festgehalten wird, sind die Filter ver- schmutzt oder verstopft und müssen gereinigt werden 		
	FU war zu lange im Überlastbe- trieb	 Last am FU-Ausgang verrin- gern und die auf dem HMI angezeigte Temperatur kontrollieren 		
	Umgebungstemperatur ist zu hoch	 Reduzieren der Umgebungs- temperatur des FU durch Erhö- hung der Kühlung/ Klimatisie- rung 		
	Fehlerhafter analoger Eingang (Al 3) auf der I/O-Schnittstellen- baugruppe	Wenden Sie sich an den Her- steller!		
Fehler Zellen-Bypass- Einheit	Schütz schaltet nicht	Wenden Sie sich an den Her- steller!		
	Fehlerhafte Spannungsversor- gung der Hauptprozessor-Bau- gruppe	Wenden Sie sich an den Her- steller!		
Fehler: Steuereinheit nicht freigegeben	Fehlerhafte Verbindung zwi- schen der Steuereinheit und der I/O-Schnittstelleneinheit	 Verdrahtung pr üfen und ggf. korrigieren 		
Fehler: Testmodus aktiv – MS einschalten Verboten	Fehlendes Signal für <i>MS nicht bereit (HV OFF</i>) an den An- schlussklemmen -XS3:1,4 der I/O-Schnittstelleneinheit	 Mittelspannung ist noch einge- schaltet ⇒ MS ausschalten! Verdrahtung prüfen und ggf. korrigieren 		
	Fehlerhafter Verriegelungs- schutz	 Verdrahtung pr		
	Fehlerhaftes Erregersystem	 Erregersystem pr		
Fehler: Erregersystem	Aktiver digitaler Eingang (Mel- dung: <i>Erregersystem Fehler</i>)	 Verdrahtung pr üfen und ggf. korrigieren 		
	I/O-Schnittstelleneinheit	 Externen Kontakt der Meldung: <i>Fehler: Erregersystem</i> pr		

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme
Externer Fehler	Abschaltung des FU durch opti- onales Motorschutzgerät oder – sofern einbezogen – durch übergeordnetes Schutzssystem	 DI <i>Externer Fehler1</i> ist aktiv (Klemmen: -XS2:1,10) ⇒ Ursache für die externe Aus- lösung ermitteln und ggf. kor- rigieren. DI <i>Externer Fehler 2</i> ist aktiv (Klemmen: -XS2:1,9) ⇒ Ursache für die externe Aus- lösung ermitteln und ggf. kor- rigieren.
	Abschaltung des FU durch Akti- vierung der NOT-AUS-Signal- kette	 DI NOT-AUS ist aktiv (Klemmen: -XS3:1,5) ⇒ prüfen, ob einer der NOT-AUS-Schalter betätigt ist ⇒ Ursache feststellen und beseitigen und NOT-AUS-Signalkette wieder herstellen ⇒ Sicherheitsrelais zurücksetzen
	Fehlerhafte Steuer-Baugruppe einer Leistungszelle	Wenden Sie sich an den Her- steller!
Fehler: Lichtwellenleiter LWL	Lichtwellenleiter (LWL) für <i>Sen- den (TX)</i> und <i>Empfangen (RX)</i> sind vertauscht	 Prüfen der LWL-Anschlüsse und ggf. korrigieren
	Verschmutzte LWL-Anschlüsse	 Säubern der LWL-Anschlüsse mit einem staubfreien Tuch oder Druckluft
	Unzureichender Kontakt zwi- schen LWL-Stecker und LWL- Buchse	 LWL-Stecker auf festen Sitz in der LWL-Buchse pr üfen und ggf. korrigieren
	Lichtwellenleiter ist gebrochen oder zu stark geknickt	 Vergleich der relativen LWL- Lichtleistung (Helligkeit) mit einer beliebigen benachbarten Zelle
		 Gesamte Länge der LWL durch Sichtprüfung auf Leitungs- bruch bzw. starke Knicke kon- trollieren und ggf. Lichtwellen- leiter austauschen
	LWL-Stecker ist beschädigt	 LWL-Stecker bzw. gesamten Lichtwellenleiter inkl. Stecker austauschen
	Verschmutzte Steuer-Bau- gruppe der Leistungszelle er- zeugt die ungewollte Fehler- meldung	 Steuerbaugruppe und Lei- stungszelle reinigen
	Die Fehlermeldung kann im Zu- sammenhang mit einer defek- ten Leistungszelle stehen, falls es zusätzliche Fehlermeldungen bzgl. defekter Leistungszellen gibt.	Wenden Sie sich an den Her- steller!
	Fehlerhafte LWL-Empfänger- Platine	Wenden Sie sich an den Her- steller!
Fehler [,] Sicherungsfall	Spannungsausfall einer Phase der netzseitigen Mittelspannung	 Verdrahtung pr üfen und ggf. korrigieren
Leistungszelle	Außergewöhnlicher Spannungs- ausfall	 Ermitteln der Ursache f ür den Spannungsausfall und ggf. kor- rigieren

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme
	Fehlender oder loser Anschluss für die Eingangsleitung der Lei- stungszelle	Prüfen der Eingangsleitung auf korrekten Anschluss an die Leistungszelle und ggf. korri- gieren
	Fehlerhafte Sicherung	Wenden Sie sich an den Her- steller!
	Nicht-ordnungsgemäße Erdung des FU-Schranks	 Erdungsanschluss des FU- Schranks prüfen Erdungswiderstand des FU- Schrankes messen (⇒ muss kleiner oder gleich 0,1 Ω sein)
		 Ist der gemessene Wider- standswert größer als 0,1 Ω, sind entsprechende Korrektur- maßnahmen durchzuführen
	Verschmutzte Steuer-Bau- gruppe der Leistungszelle er- zeugt die ungewollte Fehler- meldung	Steuerbaugruppe und Lei- stungszelle reinigen
LWL-Fehler: Empfangen (RX)	Lichtwellenleiter für Empfangs- Signale (RX) ist gebrochen oder zu stark geknickt	 Prüfen der Lichtleistung der senden Lichtwellenleiter und mit der Lichtleistung der LWL von benachbarten Zellen ver- gleichen Gesamte Länge der LWL durch Sichtprüfung auf Leitungs- bruch bzw. starke Knicke kon- trollieren und ggf. Lichtwellen- leiter austauschen
LWL-Fehler: Senden (TX)	Lichtwellenleiter für Sende-Sig- nale (Tx) ist gebrochen oder zu stark geknickt	 Prüfen der Lichtleistung der senden Lichtwellenleiter und mit der Lichtleistung der LWL von benachbarten Zellen ver- gleichen Gesamte Länge der LWL durch Sichtprüfung auf Leitungs- bruch bzw. starke Knicke kon- trollieren und ggf. Lichtwellen- leiter austauschen
Fehler: MS-Netzausfall	Netzseitiger Spannungsausfall während des FU-Betriebes	 Ermitteln der Ursache f ür den Spannungsausfall und ggf. kor- rigieren
	Falsche Einstellung des Para- meters <i>Max. zul. FRT-Dauer</i>	 Parametereinstellung pr üfen und ggf. korrigieren
Fehler: IGBT Leistungszelle	Fehlerhafte Baugruppe einer Leistungszelle zur Spannungs- erkennung	Vergewissern Sie sich, dass die Verdrahtung der Spannungser- kennungsplatine und des Wi- derstands der Erkennungspla- tine korrekt ist.
	Transiente Last (hoher Last- sprung)	Ermitteln der Ursache für den Lastsprung und ggf. korrigie- ren
	Das Erdungskabel des FU-Aus- gangs wurde entfernt	 Wiederherstellen der ord- nungsgemäßen Erdung des FU-Ausgangs
	Fehlerhafte Motorisolierung	Messen Sie das Anschlusska- bel und den Motor, um sicher- zustellen, dass die Isolierung der Motorwicklung innerhalb des zulässigen Bereich liegt.
	Motor-Blockierung durch me- chanische Last	Beseitigen der mechanischen Ursache

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme
	Nicht-ordnungsgemäße Erdung des FU-Schranks	 Erdungsanschluss des FU- Schranks prüfen Erdungswiderstand des FU- Schrankes messen (⇒ muss kleiner oder gleich 0,1 Ω sein) Ist der gemessene Wider- standswert größer als 0,1 Ω, sind entsprechende Korrektur- maßnahmen durchzuführen
	Verschmutzte Steuer-Bau- gruppe der Leistungszelle er- zeugt die ungewollte Fehler- meldung	Steuerbaugruppe und Lei- stungszelle reinigen
	Falsche Einstellung des Para- meters <i>FU-Eingang: Pri. Strom- wandler-Nennstrom</i>	 Parametereinstellung korrigie- ren
Falscher Anzeigewert der Eingangsleistung	Relais KA1 schaltet nicht	 Prüfen der korrekten Funktion des Relais KA1 und ggf. aus- tauschen Verdrahtung des Relais KA1 auf Fehler überprüfen und ggf. korrigieren
	Fehlerhafte Phasenfolge der Spannungen und Ströme am FU-Eingang	 Pr üfen der Verdrahtung der Anschl üsse f ür die Spannungen am FU-Eingang und ggf. korri- gieren
Fehler: FU-Eingang: Erdschluss	Fehlerhafte Verdrahtung des Hauptstromkreises (Primärseite des Multi-Level-Transforma- tors)	 Pr üfen der Anschlussverdrah- tung der Transformatorpri- m ärwicklungen und ggf. korri- gieren
		 Dielektrischen Test an der Transformator-Leitung gegen Erde durchführen und das Er- gebnis mit dem Datenblatt der Transformator-Herstellers ver- gleichen
	Fehlerhafte Isolierung der MS- Einspeiseleitung	 Isolationswiderstand der Ein- gangsleitung messen Messergebnis muss innerhalb des zulässingen Bessiche lagen
	Fehlerhafte Blitzableiter (sofern installiert)	 Fehlerhafte Blitzableiter austauschen Isolationswiderstandstest ("Megger") durchführen, um zu überprüfen, ob sich der Trans- formator noch im ordnungsge- mäßem Zustand befindet.
Fehler: FU-Eingang: Phasenunsymmetrie	Spannungsunsymmetrie der Netzspannung	 Messen der Netzspannung (Mittelspannung) mit geeigne- ten und den Sicherheitsbestim- mungen gemäßen Messmetho- den Ursache für Unsymmetrie der Netzspannung beheben
	Die Softwareversionen von Hauptprozessor- und I/O- Schnittstelleneinheit sind nicht kompatibel	Wenden Sie sich an den Her- steller!
	Die E/A-Abtastwiderstände der Signalkarte stimmen nicht überein.	Wenden Sie sich an den Her- steller!

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme	
Fehler: I/O- Schnittstelleneinheit nicht bereit	Fehlende Steuerspannung an - XS16	 Prüfen der Anschlussverdrah- tung des unteren Klemmbretts der I/O-Schnittstelleneinheit und ggf. korrigieren Versorgungsspannung an Klemmleiste -XS16 des unteren Klemmbretts bereitstellen 	
Fehler: Frequenzschwingungen beim Start mit niedrigen Frequenzen	Das Drehmoment am FU-Aus- gang ist bei niedriger Frequenz unzureichend	 Anpassen der Einstellung des Parameters <i>Drehmoment Ver-</i> <i>stärkungsfaktor.</i> Kurvenverläufe der Spannun- gen und Ströme am FU-Aus- gang kontrollieren 	
	Phasenausfall oder offener Kontakt in einer Phase am FU- Ausgang	 Pr üfen der Anschl üsse des FU- Ausgangs und ggf. korrigieren 	
	FU befindet sich in einem strombegrenzenden Betrieb	Anpassen der Einstellung des Parameters <i>Motor-Überlastli-</i> <i>mit.</i>	
	Falsche Einstellung der Be- schleunigungszeit	Anpassen der Einstellung des Parameters <i>Hochlauframpe</i>	
	Fehlermeldung einer defekten Leistungszelle	Wenden Sie sich an den Her- steller	
	Vibration der mechanischen Last	 Prüfen der mechanischen Last und Ursache für Vibrationen beheben 	
Fehler: Versionsfehler	Parameter sind noch nicht hochgeladen worden	 Parameter hochladen; die Fehlermeldung wird dann automatisch gelöscht 	
Steuerenmen	Die SW-Programmversionen sind nicht kompatibel	Wenden Sie sich an den Her- steller	
	Einstellbereich der Schutzfunktion: 110 – 150 % des FU-Ausgangsnennstroms		
Fehler: Motor- Überstrom	Falsche Einstellungen der Mo- torparameter	 Korrigieren der Einstellungen der Motorparameter 1 bzw. Motorparameter 2 	
	Abnormale, mechanische Last	 Prüfen der mechanischen Last und Korrekturma ßnahmen f ür normale Last durchf ühren 	
Fehler: FU-Ausgang: Erdschluss	Erdschluss am FU-Ausgang	 Prüfen der Anschlüsse des FU- Ausgangs und des Motors auf korrekten Anschluss sowie auf Beschädigungen 	
Fehler: Fehler Überspannung	Die Abbremszeit ist zu kurz für eine Last mit hoher Trägheit	Einstellwert des Parameters Bremsrampe erhöhen	
	Eingehende Netzspannung ist zu hoch	 Reduzieren der sekundärseiti- gen Transformatorspannung über den primärseitigen <i>Stu- fenschalter</i> des Multi-Level- Transformtors. 	
	Instabile Regelung	 Anpassen der <i>PI-Regler</i> f ür den <i>magn. Fluss</i>, die <i>Drehzahl</i> den <i>Strom</i>. 	
Fehler: Parametereingabe	Die Parametereinstellungen sind falsch, wenn der Rege- lungsmodus die <i>synchrone Vek- torregelung</i> ist.	Prüfen der Parametereinstel- lungen und ggf. korrigieren	
_	Voraussetzung:		

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme	
	Diese Fehlermeldung wird nur aktiviert für die Parametereinstellung Offene Schranktür: Störungsauswahl = Fehler.		
Fehler: Türalarm Zellenschrank	Mindestens eine der Türen des Zellen-Schranks ist bei einge- schaltetem FU entriegelt worden	 Prüfen, ob alle Türen des Zel- len-Schranks ordnungsgemäß geschlossen und verriegelt sind. 	
	Mindestens ein Türkontakt- schalter ist defekt	Türkontaktschalter prüfen und ggf. ersetzen	
	Temperatu	urlimit = 85 °C	
	Lüfter arbeiten nicht korrekt Filter sind verschmutzt und/oder verstopft	Prüfen, indem ein Stück Papier vor die Filter gehalten wird. Wenn das Papier nicht vom Saugluftstrom festgehalten wird, sind die Filter ver- schmutzt oder verstopft und müssen gereinigt werden	
Fehler: Leistungszelle Übertemperatur)	Beschädigung des internen Sensors durch Überhitzung der Leistungszelle	Wenden Sie sich an den Her- steller	
	FU war zu lange im Überlastbe- trieb	 Last am FU-Ausgang verrin- gern und die auf dem HMI angezeigte Temperatur kontrollieren 	
	Umgebungstemperatur ist zu hoch	Reduzieren der Umgebungs- temperatur des FU durch Erhö- hung der Kühlung/ Klimatisie- rung	
Anregelimit der Überspannungsschutzfunktion = 1190			
	Abbremszeit ist zu kurz	Einstellwert des Parameters Dauer Bremsrampe erhöhen	
		Anpassen der Einstellung des Parameters <i>Verstärkung</i> <i>Motor-Übererreg.</i> , um die Ro- tationsenergie im Motor zu ver- brauchen	
Fehler: Leistungszelle	Das Anregelimit des Überspannungsschutzes wurde überschritte	Spannung an den Leistungszelleneingängen prü- fen und ggf. Reduzierung der sekundärseitigen Transformatorspannung über den primärseitigen <i>Stufenschalter</i> des Multi- Level-Transformtors.	
obei spannung	Strom im FU-Ausgang schwankt	Anpassen der Parametereinstellungen: <i>PI-Regler (Drehzahl): P- Verstärkung</i> und <i>PI-Regler (Drehzahl): I-Zeit</i>	
	Fehlerhafte Hall-Sensoren zur Strommessung	 Verdrahtung der Hall-Sensoren prüfen und ggf. korrigieren Hall-Sensoren auf korrekte Funktion prüfen 	
	Motor nimmt hohe Blindleistung auf.	Wenden Sie sich an den Her- steller	
	Es liegt eine unausgewogene oder transiente Last vor	Last prüfen und ggf. korrigie- ren	
Fehler: Steuerspannung Leistungszelle	Defekte Baugruppe der Leistungszelle	Wenden Sie sich an den Hersteller	

Fehlermeldung Ursache für Fehlermeldung		Abstellmaßnahme	
Fehler: System- Überdrehzahl	Falsche Einstellungen des Pa- rameters <i>FU-Typ</i> bzw. anderer Steuerungsparameter	Wenden Sie sich an den Her- steller	
Fehler: El LAusaana.	Die Ausgangsspannung einer Leistungszelle ist zu niedrig	 Im Menü <i>Leistungszellen:</i> <i>Status</i> die defekte Zelle ermitteln Leistungszelle austauschen Wenden Sie sich an den Hersteller 	
Phasenunsymmetrie	Die Softwareversionen von Hauptprozessor- und I/O- Schnittstelleneinheit sind nicht kompatibel	Wenden Sie sich an den Her- steller!	
	Defekte Motorwicklungen (Kurzschluss oder Unterbrechung)	 Motor auf Schäden untersuchen und ggf. korrigieren 	
	Temperatur	limit = 150 °C	
	Falsche Einstellung des Tempe- raturlimits	Korrigieren der Parameterein- stellung	
	Filter sind verschmutzt und/oder verstopft	 Prüfen, indem ein Stück Papier vor die Filter gehalten wird. Wenn das Papier nicht vom Saugluftstrom festgehalten wird, sind die Filter ver- schmutzt oder verstopft und müssen gereinigt werden 	
Fehler: Trafo- Übertemperatur	Fehlerhafter Betrieb der Lüfter	 Prüfen, ob Leitungsschutz- schalter für Lüfter ausgelöst hat. Lüfter, Lüfterschütz, Leitungs- schutzschalter und Thermore- lais auf korrekte Funktion prü- fen und ggf. austauschen Prüfen der Verdrahtung des Lüfterkreises und ggf. korrigie- ren 	
	FU war zu lange im Überlastbe- trieb	 Last am FU-Ausgang verrin- gern und die auf dem HMI angezeigte Temperatur kontrollieren 	
	Umgebungstemperatur ist zu hoch	 Reduzieren der Umgebungs- temperatur des FU durch Erhö- hung der Kühlung/ Klimatisie- rung 	
Voraussetzung: Diese Fehlermeldung wird nur aktiviert für die Parametereinstellung Offene Schranktür: Störungsauswahl = Fehler.			
Fehler: Türalarm Trafoschrank	Mindestens eine der Türen des Trafo-Schranks ist bei einge- schaltetem FU geöffnet worden	 Prüfen, ob alle Türen des Trafo-Schrank ordnungsgemäß geschlossen sind. 	
Thatoschi ank	Mindestens ein Türkontakt- schalter ist defekt	 Türkontaktschalter prüfen und ggf. ersetzen 	
Fahlar: El I Stàrupa	Sicherheitserdung des Haupt- stromkreises wurde vor Inbe- triebnahme nicht entfernt	Sicherheitserdung des Haupt- stromkreises entfernen	
direkt nach dem Einschalten	Fehlerhafte FU-Erdung	 Sicherstellen, dass das Er- dungskabel des Hauptstrom- kreises richtig angeschlossen ist und eine niederohmige Er- dung vorhanden ist. 	

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme	
	Falsche Einstellungen der Schutzparameter für den Lei- stungszellenschrank	Parametereinstellungen prü- fen und ggf. korrigieren	
	Zu hoher Trafo-Einschaltstrom (Inrush)	Wenden Sie sich an den Her- steller!	
	Anregelimit = 150 % des	FU-Ausgangsnennstroms	
	Transiente Last (hoher Last- sprung)	 Ermitteln der Ursache f ür den Lastsprung und ggf. korrigie- ren 	1
	Falsche Einstellungen für die Parameter <i>Start Frequenz, Dauer Hochlauframpe</i> und/oder <i>Übererregung Verstärkung</i>	Korrigieren der Parameterein stellungen	1-
	Fehlerhafte Verdrahtung im FU- Ausgangskreis	Prüfen der Verdrahtung und ggf. korrigieren	
	Für die Methode zur Steuerung des FU: <i>FU-Typ = ASYNC Motor</i> <i>U/f</i> wurde die Parameterein- stellung <i>Regelkreis für Sollfre-</i> <i>quenz = Offener Regelkreis</i> ge- wählt, bevor die Funktion zur <i>Erkennung der Motorparameter</i> angewendet wurde.	Einstellen der Motorparameter in der richtigen Reihenfolge zu Parametererkennung.	er ur
	Sofern die Methode zur Steue- rung des FU einen Drehzahlge- ber verwendet: Verdrahtungs- fehler der Drehzahlgeber-Sig- nalleitungen	 Prüfen der Verdrahtung für de Drehzahlgeber und ggf. korri- gieren 	en
	Defekte Diode auf der Bau- gruppe zur Spannungserken- nung am FU-Ausgang	Wenden Sie sich an den Her- steller!	
Fehler: FU-Überstrom	Kurvenform des FU-Ausgangs- stromes ist verzerrt	Anpassen der Einstellung des Parameters Drehzahl P-Ver- stärkung	
	Fehlerhafte Motorisolierung	 Messen Sie das Anschlusska- bel und den Motor, um sicher- zustellen, dass die Isolierung der Motorwicklung innerhalb des zulässigen Bereiches lieg 	- t.
	Fehlerhafte Verdrahtung eines oder mehrerer Hall-Sensoren	 Prüfen der Verdrahtung für di Hall-Sensoren und ggf. korri- gieren 	е
		 Messen der Spannung an je- dem Hall-Sensor und prüfen, ob die Spannung jeweils inner halb des zulässigen Bereiches liegt. Wenden Sie sich an den Her- 	s.
	Eingestellte Abbremszeit ist zu	Einstellwert des Parameters	
	Eingestellte Beschleunigungs- zeit ist zu kurz	Einstellwert des Parameters Dauer Hochlauframpe erhöhe	en
	Fehlerhafte Leistungszelle(n)	Wenden Sie sich an den Her- steller!	-
	Blockierung des Motors oder ei- nes Hilfsantriebes	 Beheben der mechanischen Ursache für die Blockierung, ggf. beschädigten Motor bzw. Hilfsantrieb austauschen 	

Fehlermeldung	Ursache für Fehlermeldung	Abstellmaßnahme
	Zu hoch eingestellte Startfre- quenz	Einstellwert des Parameters Start Frequenz verringern
	Zu hoch eingestellte Drehmo- mentverstärkung	Einstellwert des Parameters Drehmoment Verstärkungsfak- tor verringern
	Fehlerhafte Verdrahtung der Blitzableiter (sofern installiert)	 Prüfen der Verdrahtung für die Blitzableiter am FU-Ausgang und ggf. korrigieren (gemäß Herstellerspezifikation)
	Leistungsklasse des FU ist für die Anforderungen der Anwen- dung zu klein	 Prüfen, ob der Nennstrom des FU-Modells für die Lastcharak- teristik des Motors geeignet ist; ggf. an den Hersteller wen- den!

 Tab. 7-5
 Fehlermeldungen – Ursachen und Abstellmaßnahmen

7.2 REPARATUR

7.2.1 AUSTAUSCH EINER DEFEKTEN LEISTUNGSZELLE

Alle Leistungszellen im Zellenschrank haben die gleichen elektrischen und mechanischen Eigenschaften. Grundsätzlich kann eine fehlerhafte Leistungszelle durch eine neue Leistungszelle mit gleicher Spezifikation ersetzt werden.

WARNUNG

Gefahr durch elektrischen Schlag!

Durch die in den Kondensatoren der Leistungszellen gespeicherte Energie kann an den Klemmen L1 und L2 von jeder Leistungszelle noch eine Restspannung in der Höhe der Leistungszellen-Nennspannung anliegen!

- Führen Sie eine Fehlersuche oder Wartung am FU niemals bei eingeschalteter MS-Spannungsversorgung durch.
- Stellen Sie sicher, dass Sie den FU ausschalten, bevor Sie die Schranktür öffnen, und befolgen Sie alle einschlägigen Verriegelungs- und Sicherheitsregeln.
- Es sind die fünf Sicherheitsregeln der Elektrotechnik anzuwenden.
- Um Verletzungen durch die Restspannung der Hauptstromkreiskondensatoren zu vermeiden, warten Sie mindestens 10 Minuten nach dem Abschalten des FU und vergewissern Sie sich, dass die Spannungsanzeige erloschen ist, bevor Sie Reparatur-, Wartungs- und Inspektionsarbeiten durchführen.
- Jegliche Reparatur-, Wartungs- und Inspektionsarbeiten darf nur von qualifiziertem und geschultem Fachpersonal durchgeführt werden.

HINWEIS
Vergewissern Sie sich, dass bei den Ersatz-Leistungszellen die beiden Glasfasergummistopfen in die TX/RX Anschlüsse einge- steckt sind, um eine Verschmutzung der Glasfasertransceiver durch Staub zu verhindern.
Wenden Sie sich nach dem Austausch bezüglich der Reparatur der Leistungszelle an Ihren Lieferanten.
Bei Reservezellen mit Elektrolytkondensatoren ist sicherzustel- len, dass die Formierung der Zwischenkreiskondensatoren vor dem Einbau und Anschluss in den Umrichter erfolgt. Dabei ist die Spannung an den Klemmen R, S, T langsam über einen Spannungsregler auf Nennspannung zu erhöhen

ANLEITUNG - AUSTAUSCH EINER LEISTUNGSZELLE

Start	Benutzerebene: (Standard)
Schritt 1:	Den FU stoppen und außer Betrieb nehmen.
Schritt 2:	Die fünf Sicherheitsregeln der Elektrotechnik anwenden.
Schritt 3:	Die MS-Versorgung ausschalten. Je nach Konfiguration entweder:
	 den Trenn-/Erdungsschalter öffnen (Position: <i>Erdung</i>) oder den Fahrwagen berausziehen oder

- mit dem Trennschalter im Bypass-Feld (bei Ausstattung mit einem Bypass-Feld) den FU freischalten.
- Schritt 4: Verriegeln des lokalen oder externen Mittelspannungsschalters und gegen Wiedereinschalten sichern.
- Schritt 5: Trenn-/Erdungsschalter in die Trenn-/Erdungsposition bringen und gegen Wiedereinschalten sichern.
- Schritt 6: Mindestens 10 Minuten warten, nachdem die MS-Spannungsversorgung unterbrochen wurde
- Schritt 7: Die Schranktür der Leistungszellen entriegeln und öffnen.
- Schritt 8: Prüfen ob sämtliche Spannungsanzeigen (Leuchtdioden) an den Leistungszellen erloschen sind und ggf. warten, bis diese erloschen sind.
- Schritt 9: Die Steckverbindungen der TX- und RX-Lichtwellenleiter von der defekten Zelle lösen.
- Schritt 10: Die Anschlüsse R, S und T der fehlerhaften Leistungszelle lösen und die Eingangsstromleitung entfernen.
- Schritt 11: Die Anschlüsse L1 und L2 am Ausgang der fehlerhaften Leistungszelle lösen und die Verbindungsleitungen zu den benachbarten Leistungszellen entfernen.
- Schritt 12: Die Schrauben entfernen, mit denen die defekte Leistungszelle an ihrer Montageschiene befestigt ist.
- Schritt 13: Die defekte Leistungszelle vorsichtig entlang ihrer Schiene an dem Haltegriff der Leistungszelle herausziehen.
- Schritt 14: Die Verschlussstopfen für die Lichtwellenleiter von der neuen Leistungszelle entfernen und die Verschlussstopfen in die LWL-Anschlüsse der defekten Zelle stecken.
- Schritt 15: Die neue Leistungszelle in umgekehrter Reihenfolge des Ausbaus installieren, die Befestigungselemente und Anschlüsse mit den erforderlichen Drehmomenten festziehen.
- Schritt 16: Den FU wieder einschalten und den ordnungsgemäßen Betrieb überprüfen.

ENDE

8 TRANSPORT, LAGERUNG UND INSTALLATION

8.1 EINGANGSKONTROLLE

Nach Erhalt des MVH 2.0 bitte das Folgende prüfen:

VORSICHT

- Vergewissern Sie sich, dass die äußere Verpackung des MVH 2.0 keine Beschädigungen aufweist.
- Entfernen Sie die Verpackung des MVH 2.0 und vergewissern Sie sich, dass der gesamte Inhalt unbeschädigt ist und dass keine gebrochenen oder verbogenen, internen Komponenten vorhanden sind.
- Prüfen Sie erhaltene Lieferung gegen die Packliste, um sicherzustellen, dass die Lieferung vollständig ist und dem vereinbarten Lieferumfang entspricht.

Wenn der FU beschädigt ist, verweigern Sie die Annahme und kontaktieren Sie sofort den Spediteur.

8.2 LAGERUNG

Der FU sollte in einem belüfteten Raum gelagert werden; bei einer Temperatur zwischen -40 °C und 70 °C und mit einer nicht kondensierenden Luftfeuchtigkeit von nicht mehr als 90 %.

8.3 TRANSPORT

Bei ordnungsgemäßer Verpackung kann der MVH 2.0 per Flugzeug, LKW, Zug, Schiff usw. transportiert werden.

٨	VORSICHT	
	>	Während des Transports sollte der MVH 2.0 weder Regen, länge- rem direktem Sonnenlicht, Schmutz, starken Vibrationen oder Stößen ausgesetzt werden, noch darf das Gehäuse umgedreht abgestellt oder auf die Seite gelegt werden.
	٨	Beachten Sie die Höhenbeschränkungen vor und während des Transports des MVH 2.0 an seinen Endposition.
	۶	Alle Kräne oder Hebevorrichtungen müssen eine höhere Hebe- kraft besitzen als das Gewicht des MVH 2.0.

8.3.1 HANDHABUNG BEIM TRANSPORT

Ein Transport der FU-Schränke ist für mit den folgenden Methoden möglich:

- Heben mit einem Brückenkran
- Anheben mit einem Handkettenzug
- Heben mit Rollen
- Gabelstapler mit hoher Tragfähigkeit

Verwendung eines Brückenkrans oder eines Handkettenzuges

VORSICHT

- Vergewissern Sie sich, dass die Stabilität und die Länge der zu verwendenden *Tragseile* der Traglast entsprechen.
- Heben Sie die Last *nicht* mit Seilen direkt an den Transportösen. Die Verwendung einer *Spreizstange* ist unbedingt erforderlich, um Verformungsschäden am Schrank zu vermeiden!

VERWENDUNG VON TRANSPORTROLLEN Die Verwendung von *Transportrollen* eignet sich für enge Räume, in denen kein Kran oder Handkettenzug eingesetzt werden kann.

Legen Sie mehrere Rollen nacheinander auf den Boden, stellen Sie den Schrank auf die Rollen und verwenden Sie einen Stangenhebel, um die Rollen in die Installationsposition zu bewegen.

VORSICHT

- Um eine Beschädigung des Schranks beim Anheben zu vermeiden, müssen alle vier Transportösen gleichzeitig verwenden werden.
- Beim Anheben des Leistungszellenschranks darf der Winkel zwischen dem Seil und dem Schrank nicht kleiner als 60° sein. Verwenden Sie eine Spreizstange, um die Last zu verteilen.
- Verwenden Sie zum Anheben des Transformatorschranks die eigenen Transportösen des Multi-Level-Transformators. Nicht am Gehäuse des Transformatorschranks anheben (siehe folgende Abbildung der schematischen Darstellung der Schrankzüge). Wenn mehrere Lüfter auf der Oberseite des Transformatorschranks installiert sind, entfernen Sie die Lüfter vor dem Anheben des Transformators und montieren Sie sie wieder, nachdem die Einheit in ihre endgültige Position gebracht wurde.
- Seien Sie vorsichtig, wenn Sie die Hebevorrichtung an der Innenseite des Transformatorschrankes befestigen. Berühren Sie *NICHT* die Transformatorspulen oder die Isolierung. Verhindern Sie, dass Fremdkörper oder Materialien in den Schrank fallen können. Achten Sie beim Anheben des Transformators darauf, dass der Hebewinkel den Lüfter oder die Abdeckplatte nicht deformiert.
- Der Schrank muss auf eine ebene Fläche gestellt werden, um eine korrekte Ausrichtung sowie das normale Öffnen und Schließen der Schranktüren zu gewährleisten.
- Beachten Sie alle örtlichen Sicherheitsvorschriften zum Anheben. Wenn der Schrank angehoben wird, dürfen sich keine Personen unter der angehobenen Last aufhalten.
- Um ACC-Schränke in die richtige Position zu heben, verwenden Sie Schlaufen durch die Gabelstaplerrohre (an der Unterseite des Schranks) in Verbindung mit Spreizstangen (oberhalb des Schranks). Wenn Sie die oberen Spreizstangen nicht verwenden, können Tür und Luftfilter beschädigt werden.

 Abb. 8-1
 Schematische Darstellung der Hebevorrichtungen für die verschiedenen Schranktypen

 a) Transformatorschrank – Hebevorrichtung für Dach

 b) Leistungszellenschrank – Hebevorrichtung für Dach

 c) Leistungszellenschrank – Hebevorrichtung für Boden

1 Hebevorrichtung

KÜHLUNG DES FU-SCHRANKS

Abb. 8-3 Strömungswege der Kühlluft in den verschiedenen Schranktypen – Beispiel: 11 kV FU: a) Steuerungsschrank und Leistungszellenschrank b) Transformatorschrank

Bei hohen Umgebungstemperaturen oder schlechter Belüftung kann es erforderlich sein, einen *Umluftventilator* oder eine *industrielle Klimaanlage* zu installieren. Um die Umgebungstemperatur des FU zu senken, kann konstruktiv ein *zentraler Lüftungskanal* installiert werden. Die heiße Luft gelangt durch das Zentrifugalgebläse über den Lüftungskanal ins Freie. Der zentrale Lüftungskanal ist direkt mit den Kühlgebläsen auf der Oberseite des Schaltschranks verbunden (s. folgende Abbildung *Luft-Wasser-Kühlungsschema*).

Das *Belüftungssystem* muss so ausgelegt sein, dass der Luftstrom im FU-Kühlsystem nicht behindert wird. Wenn Außenluft zirkuliert, muss außerdem darauf geachtet werden, dass die Luftfilter nicht durch Fremdkörper verstopft werden können.

6 Kühlwassereinlass und -auslass

8.4 INSTALLATION

AUFSTELLUNG DES FU-SCHRANKS Aus Gründen der Sicherheit und der einfachen Kabelführung wird empfohlen, die Schränke über einen *Kabelkanal* zu installieren (s. folgende Abbildung *Kabelkanal/-schacht*). Dazu benötigt der FU einen ausreichend tragfähigen Unterbau, welcher dem Gewicht des FU entspricht.

Der *Boden* des FU besteht aus 10# Kanalstahl. (Für Nennleistungen des FU größer oder gleich 2146 PS/1600 kW ist der Boden aus 16# Kanalstahl gefertigt. Für Nennleistungen größer als 5364 PS/4000 kW ist er aus 18# Balkenstahl gefertigt.)

In der *Vorderansicht* sind der Transformatorschrank und der Leistungszellenschrank von links nach rechts angeordnet und miteinander verschraubt.

Der FU sollte auf einer *stabilen Unterlage* installiert und sollde geerdet werden. Die Abschirmung des Multi-Level-Transformators und seine Klemmen müssen geerdet sein. Der *Erdungswiderstand* sollte weniger als 4 Ω betragen. Sämtliche Schränke eines FU sind miteinander verbunden und bilden so das Gesamtsystem.

Abb. 8-5 Kabelkanal/-schacht

ZUSÄTZLICHE, OPTIONALE SCHRANKFELDER

Je nach Anwendung können Zubehörschränke vorgesehen werden:

- Ein *Bypass-Feld* wird verwendet, um den Motoranschluss vom FU-Ausgang auf die netzseitige Einspeiseleitung umzuschalten.
- Ein *synchrones Umschaltsystem* wird verwendet, um den FU-Ausgang zur Steuerung von bis zu zwei Motoren zu verwenden.
- Ein *Vorladeschrank* dient zur Begrenzung der Einschaltströme von Hochleistungs-FU Systemen.

=

HINWEIS

Wenn das ausgewählte Zubehör ein Bypass-Feld, einen Vorladeschrank usw. umfasst, entspricht die tatsächliche Position den spezifischen Projektzeichnungen.

9 ENTSORGUNG

Sollte der Frequenzumrichter MVH 2.0 endgültig außer Betrieb gesetzt werden, beachten Sie bitte die folgenden vorbereitenden Maßnahmen für eine sach- und umweltgerechte Entsorgung des Produktes.

Sicherheitshinweise Die in Kapitel *Sicherheit* angeführten Sicherheitshinweise sind stets für sämtliche Arbeiten zu beachten.

Elektro- und Elektronikkomponenten

REACH-Verordnung

$\langle \mathbf{n} \rangle$	ENTSORGUNGSHINWEIS	
X		Baugruppen des FU die elektrische bzw. elektronische Bauteile enthalten, sind gemäß der <i>Richtlinie 2012/19/EU</i> zu entsorgen.
	۶	<i>Nicht-EU Länder</i> : Elektroaltgeräte sind gemäß den lokal gültigen, gesetzlichen Verordnungen zu entsorgen.
	\triangleright	Elektroaltgeräte niemals über den Hausmüll entsorgen.

Folgender besonders besorgniserregender Stoff der REACH Kandidatenliste vom 14. Juni 2023 ist in diesem Produkt in einer Konzentration über 0,1 Gewichts% enthalten:

> Blei; CAS-Nummer: 7439-92-1; EG-Nummer: 231-100-4

Information gemäß Artikel 33

Gemäß dem aktuellen Kenntnisstand ist davon auszugehen, dass der vorstehend genannte Stoff bei bestimmungsgemäßem Gebrauch und Entsorgung dieses Produktes, kein Risiko darstellt.

- NICHT-ELEKTRISCHEBaugruppen des FU die keine elektrischen Komponenten enthalten, wie z. B. Schrankge-
rüst, Schrankverkleidung, Schranktüren etc., sind gemäß den lokalen Verordnungen zu
entsorgen. Kontaktieren Sie dazu Ihre Partner für Recycling oder die lokalen Behörden.
 - *VERPACKUNG* Materialien zur Verpackung des MVH 2.0 wie Holz, PVC, Kunststoffe sind wiederverwendbar. Kontaktieren Sie dazu Ihre Partner für Recycling oder die lokalen Behörden.

10 ERSATZTEILE

Die Verwendung von Ersatz- und Zubehörteilen die *nicht von AuCom spezifiziert* sind, können Sachschäden an dem Produkt verursachen.

Es dürfen nur Ersatz- und Zubehörteile verwendet werden, die von AuCom spezifiziert und freigegeben sind.

BESTELLHINWEIS Für die Frequenzumrichter der MVH 2.0 Serie sind eine Reihe von Artikeln als Ersatzteile und Zubehör erhältlich, wie z.B. (Auszug):

- Leistungszellen,
- Mittelspannungssicherungen,
- Niederspannungssicherungen für die Leistungszellen,
- Filtereinsätze für die Einlässe der Kühlkanäle des FU-Schranks
- und weitere.

Für die Bestellungen wenden Sie sich bitte direkt an AuCom MCS GmbH & Co. KG oder an Ihren lokalen Lieferanten.

(Bestelladresse siehe Kapitel *Einleitung* in dieser Betriebsanleitung)

INDEX

Α

Alarm	
Alarmmeldung	
Analogausgang	
Analogeingang	76, 175, 180, 204, 222

В

Bedieneinheit	
Betriebsmesswerte	
Bremsrampe	.39, 143, 144, 146, 148, 150, 241

D

Drehmoment 15, 144, 148	3, 151, 214, 216, 233, 252, 258
Drehzahl	.18, 34, 41, 127, 128, 145, 148
Drehzahlgeber	71, 76, 164, 255

Е

Erdungskonzept	
Erdungsposition	
Erdungswiderstand	
Erregerstrom	168, 172, 199, 200, 203

F

Fehler	
Fehlermeldung	
Filter	40, 177, 183
FRT	
FU-Abschaltung	
FU-Anwendungen	

G

Geschlossener Regelkreis	175,	181
Gleichrichter		94
Gleichspannungszwischenkreis	94, 96,	127

Н

23, 57, 58, 81, 92, 100, 101
64
39, 144, 145, 149, 165, 241

I

IGBT-Bypass	155,	230
Impulssignal	218,	219
Ist-Wert 176, 180,	181,	214

Κ

Kondensator	94, 161	, 234, 238,	257
L			
Leistungsfaktor	27, 172	, 199, 201,	205

Leistungszellen	20,	35,	42,	46,	90
Linksdrehfeld				1	64

М

Magn. Fluss	
Magnetisierungsstrom	
Master/Slave-Betrieb	
Messwerte	. 72, 107, 110, 126, 129, 195
Motor-Bremsvorgang	
Motor-Nenndaten	
Motorstart	
Motor-Start/Stop	
Motorstop	
Multi-Level-Transformator	.20, 41, 50, 64, 92, 127, 149,
251, 260	

Ν

0

Offonor	Dogolkroic	175	255
Unener	Regentiers	170.	200
		- /	

Ρ

Pegelsignal	77, 78, 168, 219
Phasenwinkeldifferenz	85, 127, 160, 232
PID-Regler	175, 177, 181, 202
PI-Regler	157, 164, 214

R

REACH	
Rechtsdrehfeld	
Rücksetzen	
Rückwärtslauf	77, 102, 127, 169, 218

S

Schirmung	
Schütz-Bypass	
Sicherheitsregeln 1	4, 23, 59, 92, 234, 238, 257
Sicherungen	
Soll-Wert	
Steuereinheit	44, 50, 67, 91, 102, 112
Störungen	
Support	
Synchrone Umschaltung	
Synchronisierung	. 82, 85, 127, 157, 206, 215

Т

Transformator-Hilfswicklung	
Transformatorschrank	. 31, 50, 59, 185, 247
Transportösen	
Trenn-/Erdungsschalter	
Türkontakt	23, 74, 240, 242

AUCOM MOTOR CONTROL SPECIALISTS

U

Überdrehzahl	
Übererregung	
Überlastlastbetrieb	
Überspannung	
Überstrom	39, 148, 150, 151, 161, 163, 226
Umgebungstemperatur.	

۷

Vorladung	1,	3	35	ō
-----------	----	---	----	---

W

Wirkstrom1	63, 164, 166, 214, 217
Z	
Zellenerkennung	
Zellenschrank	

New Zealand

123 Wrights Road, PO Box 80208, Christchurch 8440, New Zealand T +64 3 338 8280 $\,$ F +64 3 338 8104

China

203-1 JH Plaza, 2008 Huqingping Road, Shanghai 201702, China T +86 21 5877 5178 F +86 21 5877 6378

Germany

Borsigstraße 6, 48324 Sendenhorst, Germany T +49 2526 93880 0 F +49 2526 93880 100

Middle East

Al Thanyah Fifth, Mazaya Business Avenue BB2, Jumeirah Lakes Towers, Dubai, UAE T +971 4 430 7203

North America

Benshaw, Inc 615 Alpha Drive, Pittsburgh, PA 15238, USA T +1 412 968 0100 F +1 412 968 5415

RIGHT FROM THE START

